Limnoria Documentation

The Limnoria/Gribble/Supybot contributors

Jul 28, 2023

Contents

1 User Guide

1.1 Installing Limnoria on GNU/Linux and UNIX (FreeBSD, macOS,...)
1.2 Installing Limnoriaon Windows L
1.3 Getting Started with Limnoria/Supybot L
1.4 Configuration o it i e e e e e e e
1.5 Identifying the bOt tO SEIVICES v i ittt e e e e e e e e e
1.6 Capabilities o e e e e e e e e e e e e e
1.7 Security in Limnoria L
1.8 Usingthe HTTP server ettt e e
1.9 Restarting the botautomatically
1.10 Frequently Asked QUEStionsot e e e e e e e
2 Plugin Developer Guide
2.1 Writing Your First Limnoria Plugin
2.2 Using commands.wrap to parse your command’s argumentsa ...
2.3 StyleGuidelines e e e e e e e e e e
24 Advanced Plugin Config e e e e e
2.5 Advanced Plugin Testing o L e e e e e e e e
2.6 Distributing plugins L. e e
2.7 Using Supybot’sutilsmodule
2.8 Capabilities e e e e e e e e e e e e e e
2.9 Special methods and catching events e e e
2.10 Using Limnoria’s HTTP server in your plugins
2.11 Event scheduling using supybot.schedule oo L.
2.12 Software architecture e e e e e
2.13 Frequently Asked QUESHIONS o v i i e e e e e e e e e e e e e e e
2.14 Libraryreference L e e e e e e
3 Contributing to Limnoria
3.1 Contributing to Limnoriaasadeveloper e
3.2 Translating Limnoria L L e e e e e
4 Glossary

5 Indices and tables

Python Module Index

119
119
120

123

125

127

Index 129

Limnoria Documentation

Limnoria is a robust (it doesn’t crash), user friendly (it’s easy to configure) and programmer friendly (plugins are
extremely easy to write) Python IRC bot. It aims to be an adequate replacement for most existing IRC bots. It includes
a very flexible and powerful ACL system for controlling access to commands, as well as more than 60 builtin plugins
providing around 400 actual commands.

It is the successor of Supybot since 2010 and provides many new features, but keeps full compatibility with existing
configurations and plugins.

Contents:

Contents 1

Limnoria Documentation

2 Contents

CHAPTER 1

User Guide

1.1

Installing Limnoria on GNU/Linux and UNIX (FreeBSD, macOS,
..

This is the “easy to follow” guide to installing Limnoria.

This guide is for non-Windows operating systems. If you want to install on Windows, check out the Windows install

guide.

1.1.1 Install

Install using your OS’ package manager

Debian or Ubuntu: sudo apt—-get install limnoria

Note that stable / LTS releases may not have the latest features or bug fixes for Limnoria. If you want a newer
version than what’s in the default repositories, you can enable Backports on Debian or Unit 193’s PPA on
Ubuntu.

Fedora: sudo dnf install limnoria

CentOS and Red Hat Enterprise Linux: you have to first add the right EPEL repository for your CentOS/RHEL
version before being able to install the package on CentOS / RHEL. Once you have, you can run the following
command to install Limnoria: sudo yum install limnoria

Arch Linux: You can install Limnoria from the AUR, using either limnoria (stable releases) or limnoria-git (git
snapshots).

Gentoo: sudo emerge net—-irc/limnoria

Guix and GuixSD: guix package —--install limnoria

If any of the methods above works for you, skip the next section and go to Configuration.

https://wiki.debian.org/Backports
https://launchpad.net/~unit193/+archive/ubuntu/limnoria
https://aur.archlinux.org/packages/limnoria/
https://aur.archlinux.org/packages/limnoria-git/

Limnoria Documentation

Other operating systems (manual install)
If you followed the section above, skip this one.
Dependencies

The only mandatory dependency is Python 3.4 or greater.
You may also install chardet and feedparser, which are used by Limnoria if they are available.

The remaining of this guide will assume you have Python 3.

Install Python

Python will usually come by installed by default in your distribution. If not, grab the appropriate packages from the
distribution’s repository, or download it from https://python.org.

Install Limnoria

In the next section of this guide we will use pip, which is a generic way of installing Python software.

Global installation (with root access)

If you do not have root access, skip this section.
If you are logged in as root, you can remove sudo from the install commands.

If you want to use the testing branch which might be more up-to date BUT LESS TESTED, replace master with
testing in the commands.

First, install Limnoria’s optional dependencies (you can skip this step, but some features won’t be available):

sudo python3 -m pip install -r https://raw.githubusercontent.com/ProgVal/Limnoria/
—master/requirements.txt —--upgrade

Then Limnoria itself:

sudo python3 -m pip install limnoria —--upgrade

If you have an error saying No module named pip, install pip using your package manager (the package is
usually named python3-pip).

If you have an error about externally-managed-environment, you need to setup a virtualenv first, then
re-run the commands above:

python3 -m venv /opt/venvs/limnoria # creates a virtualenv at the given path
/opt/venvs/limnoria/bin/activate # enables the virtualenv in the current shell

Local installation (without root access)

If you have followed the previous section, skip this one.

4 Chapter 1. User Guide

https://python.org
https://pip.readthedocs.org/en/latest/installing.html#install-pip

Limnoria Documentation

Simply add ——user to the end of both commands. First we install requirements (you can skip it, but some features
won’t be available) and then Limnoria itself.:

python3 -m pip install -r https://raw.githubusercontent.com/ProgVal/Limnoria/master/
—requirements.txt —--user —-—-upgrade
python3 -m pip install limnoria —--user --upgrade

You might need to add $SHOME/.local/bin to your PATH.:

echo '"PATH="SHOME/.local/bin:S$PATH"' >> ~/.$(echo $SHELL|cut -d/ —-£3)rc
source ~/.$(echo $SHELL|cut -d/ -f3)rc

If you have an error saying No module named pip, install pip using this guide: https://pip.pypa.io/en/stable/
installing/

If you have an error about externally-managed-environment, you need to setup a virtualenv first, then
re-run the commands above:

python3 -m venv ~/.venvs/limnoria # creates a virtualenv at the given path
~/.venvs/limnoria/bin/activate # enables the virtualenv in the current shell

1.1.2 Configuration

Note: For historical reasons, commands are called supybot; but they actually run Limnoria.

We are now ready to configure Limnoria. Limnoria creates quite a few auxiliary files/directories to store its runtime
data. It is thus recommended to create an empty directory from which you’ll be running Limnoria, to keep all the data
in a nice dedicated location. For example, you may create a ‘runbot’ directory inside your home directory.

Now you can cd to your ‘runbot’ directory, and from within it run supybot—-wizard, which will walk you through
a series of questions to generate the bot config file.

One thing to make sure to do in the wizard, to make your life easier down the line, is to select y for the Would you like
to add an owner user for your bot? question, and actually create the owner user. Remember that password, so that you
can later “’identify” with the bot on IRC and administer it.

Once you generate the config file, which will be named yourbotnick.conf (where “yourbotnick™ is the nick you
have chosen for your bot in the wizard), it will be placed in your ‘runbot’ directory. (As long as you leave the default
answer to the “"Where would you like to create these directories?” question.)

Now to start the bot, run, still from within the ‘runbot’ directory:

supybot yourbotnick.conf

And watch the magic!

For a tutorial on using and managing the bot from here on, see the Supybook.

1.2 Installing Limnoria on Windows

This is the “easy to follow” guide to installing Limnoria. The installation documentation provided with the Limnoria
distribution is really quite good already, but since people keep coming to IRC, asking a repeating pattern of questions,
we thought it would be a good idea to expand it a bit to make it a little more of a “foolproof guide”.

This guide is only for Windows. If you don’t want to install on Windows, check out the non-Windows install guide.

1.2. Installing Limnoria on Windows 5

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://hoxu.github.io/supybook/

Limnoria Documentation

1.2.1 Install

Install Python
Download the latest Python 3 installer from https://www.python.org, 3.11.2, as of 2023-03-14) and run it to install
Python.

Installing Python is mostly clicking next, but in the next screen remember the destination directory where you in-
stalled Python. These instructions refer to it as C: \Python311\ which is the current name on 2023-03-14. If you
downloaded a newer version, replace the version number with the new one.

Then you are asked to customize your installation. Click the drive on left side of “Python” text and select “Entire
feature will be installed on local hard drive”.

Now Python installs itself which may take several minutes.

Python should be now installed and you can check that the “python” command points to correct python. Open cmd.
exe (press the Windows button on your keyboard and type “cmd.exe”) and run where python and the toppernmost
entry should be C: \Python311\python.exe.

Install Limnoria

Now we are ready to install Limnoria and it’s requirements. Open cmd . exe as Administrator (right click it in the
previous place) and run:

python3 -m pip install -r https://raw.githubusercontent.com/ProgVal/Limnoria/master/
—requirements.txt —--upgrade
python3 -m pip install limnoria —--upgrade

We are now ready to configure Limnoria. Limnoria creates quite a few auxiliary files/directories to store its runtime
data. It is thus recommended to create an empty directory from which you’ll be running Limnoria, to keep all the data
in a nice dedicated location. For example, you may create a C: \Users\<username>\runbot for this purpose.

1.2.2 Configure Limnoria

Note: For historical reasons, commands are called supybot; but they actually run Limnoria.

Now you open cmd.exe as normal user, and create and cd into your runbot directory:

mkdir runbot
cd runbot

and from within it run supybot-wizard:

python3 C:\Python311\Scripts\supybot-wizard

which will walk you through a series of questions to generate the bot config file.

One thing to make sure to do in the wizard, to make your life easier down the line, is to select y for the Would you like
to add an owner user for your bot? question, and actually create the owner user. Remember that password, so that you
can later “’identify” with the bot on IRC and administer it.

Once you generate the config file, which will be named yourbotnick.conf (where yourbotnick is the nick
you have chosen for your bot in the wizard), it will be placed in your runbot directory. (As long as you leave the
default answer to the Where would you like to create these directories? question.)

6 Chapter 1. User Guide

https://www.python.org

Limnoria Documentation

Now to start the bot, run, still from within the C: \users\<username>\runbot directory:

python3 C:\Python311\Scripts\supybot yourbotnick.conf

And watch the magic!

This guide has been mainly written by nanotube (Daniel Folkinshteyn), and is licensed under the Creative Commons
Attribution ShareAlike 3.0 Unported license and/or the GNU Free Documentation License v 1.3 or later.

1.3 Getting Started with Limnoria/Supybot

1.3.1 Introduction

Ok, so you’ve decided to try out Limnoria. That’s great! The more people who use Limnoria, the more people can
submit bugs and help us to make it the best IRC bot in the world :)

You should have already read through our install document (if you had to manually install) before reading any further.
Now we’ll give you a whirlwind tour as to how you can get Limnoria setup and use Limnoria effectively.

1.3.2 Initial Setup

Now that you have Limnoria installed, you’ll want to get it running. The first thing you’ll want to do is run
supybot-wizard. Before running supybot-wizard, you should be in the directory in which you want your
bot-related files to reside. The wizard will walk you through setting up a base config file for your Limnoria. Once
you’ve completed the wizard, you will have a config file called botname.conf. In order to get the bot running, run
supybot botname.conf.

1.3.3 Listing Commands

Ok, so let’s assume your bot connected to the server and joined the channels you told it to join. For now we’ll assume
you named your bot ‘mybot’ (you probably didn’t, but it’ll make it much clearer in the examples that follow to assume
that you did). We’ll also assume that you told it to join #channel (a nice generic name for a channel, isn’t it? :)) So
what do you do with this bot that you just made to join your channel? Try this in the channel:

<user> supybot: list
<supybot> Admin, Channel, ChannellLogger, Config, Misc, Network, Owner, Plugin, User,
—and Utilities

Replacing ‘supybot’ with the actual name you picked for your bot, of course. Your bot should reply with a list of the
plugins it currently has loaded. At least Admin, Channel, Config, Misc, Owner, and User should be there; if you used
supybot-wizard to create your configuration file you may have many more plugins loaded. The list command can also
be used to list the commands in a given plugin:

<user> supybot: list Misc
<supybot> user: apropos, clearmores, completenick, help, last, list, more, noticetell,
— ping, source, tell, and version

This listed all the commands in the Misc plugin. If you want to see the help for any command, just use the help
command:

1.3. Getting Started with Limnoria/Supybot 7

Limnoria Documentation

<user> supybot: help help

<supybot> user: (help [<plugin>] [<command>]) -- This command gives a useful
—~description of what <command> does. <plugin> is only necessary if the command is in_
—more than one plugin. You may also want to use the 'list' command to list all
—available plugins and commands.

<user> supybot: help list

<supybot> user: (list [--unloaded] [<plugin>]) -- Lists the commands available in the
—given plugin. If no plugin is given, lists the public plugins available. If —-
—unloaded is given, it will list available plugins that are not loaded.

<user> supybot: help load

<supybot> user: (load <plugin>) -- Loads the plugin <plugin> from any of the_
—directories in conf.supybot.directories.plugins; usually this includes the main_,
—~installed directory and 'plugins' in the current directory.

Sometimes more than one plugin will have a given command; for instance, the “list” command exists in both the Misc
and Config plugins (both loaded by default). List, in this case, defaults to the Misc plugin, but you may want to get
the help for the list command in the Config plugin. In that case, you’ll want to give your command like this:

<user> supybot: help config list

<supybot> user: (config list <group>) —-- Returns the configuration variables
—available under the given configuration <group>. If a variable has values under it,
—~1it is preceded by an 'Q@' sign.

Anytime your bot tells you that a given command is defined in several plugins, you’ll want to use this syntax (“plugin
command”) to disambiguate which plugin’s command you wish to call. For instance, if you wanted to call the Config
plugin’s list command, then you’d need to say:

<user> supybot: config list

Rather than just ‘list’.

1.3.4 Making Limnoria Recognize You

For making the bot to identify to services, please see identifying to services.

If you ran the wizard, then it is almost certainly the case that you already added an owner user for yourself. If not,
however, you can add one via the handy-dandy ‘supybot-adduser’ script. You’ll want to run it while the bot is not
running (otherwise it could overwrite supybot-adduser’s changes to your user database before you get a chance to
reload them). Just follow the prompts, and when it asks if you want to give the user any capabilities, say yes and then
give yourself the ‘owner’ capability, restart the bot and you’ll be ready to load some plugins!

Now, in order for the bot to recognize you as your owner user, you’ll have to identify with the bot.

Open up a query window in your irc client (‘/query’ should do it; if not, just know that you can’t identify in a channel
because it requires sending your password to the bot). Then type this:

<user> help identify
<supybot> (identify <name> <password>) -- Identifies the user as <name>. This command
— (and all other commands that include a password) must be sent to the bot privately,
—not in a channel.

[

And follow the instructions; the command you send will probably look like this, with ‘myowneruser’ and ‘myuser-
password’ replaced:

<user> identify myowneruser myuserpassword
<supybot> The operation succeeded

8 Chapter 1. User Guide

Limnoria Documentation

The bot told you ‘The operation succeeded’, meaning that you got the right name and password. Now that you’re
identified, you can do anything that requires any privilege: that includes all the commands in the Owner and Admin
plugins, which you may want to take a look at (using the list and help commands, of course). One command in
particular that you might want to use (it’s from the User plugin) is the ‘hostmask add’ command: it lets you add a
hostmask to your user record so the bot recognizes you by your hostmask instead of requiring you always to identify
with it before it recognizes you. Use the ‘help’ command to see how this command works. Here’s how I often use it:

<user> hostmask add myuser [hostmask] mypassword
<supybot> The operation succeeded

You may not have seen that ‘[hostmask]’ syntax before. Limnoria allows nested commands, which means that any
command’s output can be nested as an argument to another command. The hostmask command from the User plugin
returns the hostmask of a given nick, but if given no arguments, it returns the hostmask of the person giving the
command. So the command above adds the hostmask I’m currently using to my user’s list of recognized hostmasks.
I’m only required to give mypassword if I'm not already identified with the bot.

It might often be better to specify the hostmask by yourself instead of nesting the hostmask command as the hostmask
command gives your exact hostmask of that moment meaning nick!ident@host which means that you will get
unidentified if you change your nickname.

I (Mikaela) often specify hostmasks in two other forms depending on the situation which I go through in next subtopics.

Wildcard nick

In case my username and host stay the same or there aren’t bots on same server which could get identified as me to
other bots, I use:

<user> user hostmask add myuser *!myident@myhost
<supybot> The operation succeeded

I only recommend this if there is ident server configured and the IRC network checks for it.

Host only

In case I am the only one who has the same host (cloaks/vhosts on many networks which have account in them, (for
example Libera) or server where no one else has access and no bots share it either), I use:

<user> user hostmask add myuser *!x@mycloak
<supybot> The operation succeeded

Mycloak at Libera is usually in format user/accountname. You can usually request hostmasks using HostServ,
/msg HostServ help, or asking on help channel of your IRC network, in case of Libera that is #libera. OFTC is
exception to this and uses /msg NickServ set cloak on, but whatever your network users, you can ask it on
their help channel.

Limnoria

Limnoria has two additional methods to identify, GPG and NickAuth, each provided as a plugin that you need to load
(with the 1oad command).

1.3. Getting Started with Limnoria/Supybot 9

Limnoria Documentation

GPG

First you must associate your GPG key with your Limnoria account. The gpg add command takes two arguments, key
id and key server.

My key is 0x0C207F07B2F32B67 and it’s on keyserver pool.sks-keyservers.net so and now I add it to my bot:

<Mikaela> +gpg add 0x0C207F07B2F32B67 pool.sks-keyservers.net
<Yvzabevn> 1 key imported, 0 unchanged, 0 not imported.

Now I can get token to sign so I can identify:

<Guest45020> +gpg gettoken

<Yvzabevn> Your token is: {03640620-97ea-4fdf-b0c3-ce8fb62£f2dc5}. Please sign it with_
—your GPG key, paste it somewhere, and call the 'auth' command with the URL to the
— (raw) file containing the signature.

Then I follow the instructions and sign my token in terminal:

echo "{03640620-97ea-4£fdf-b0c3-ce8fb62f2dc5}" |gpg ——clearsign|curl -F 'sprunge=<-'
—http://sprunge.us

Note that I sent the output to curl with flags to directly send the clearsigned content to sprunge.us pastebin. Curl
should be installed on most of distributions and comes with msysgit. If you remove the curl part, you get the output to
terminal and can pastebin it to any pastebin of your choice. Sprunge.us has only plain text and is easy so I used it in
this example.

And last I give the bot link to the plain text signature:

<Guest45020> +gpg auth http://sprunge.us/DUdd
<Yvzabevn> You are now authenticated as Mikaela.

NickAuth

This requires you to load the NickAuth plugin (see next section of this page for loading plugins).

NickAuth allows you to identify to the bot using your NickServ account. First I add my NickServ account name which
I can see with “/whois Mikaela Mikaela” (because my current nick is Mikaela). It gives me something like:

[Mikaela] is logged in as Mikaela

Now I tell the bot add my NickServ account Mikaela to my bot user on Libera. The syntax is [<network>] <bot-
username> <NickServ-account>:

<Mikaela> +nickauth nick add Libera Mikaela Mikaela
<Yvzabevn> OK.

Next time when I identify to NickServ I will get identified automatically if the bot sees that I was identified when I
joined. This requires server to support extended-join and WHOX. Most of modern networks support them, but if your
bot is using some bouncer, it might not support them.

Automatic identification doesn’t work always even when it’s supported, but when it fails, I can always use the Nick-
Auth Auth command to identify to the bot:

<Guest45020> +whoami
<Yvzabevn> I don't recognize you. You can messsage me either of these two commands:

—"user identify <username> <password>" to log in or "user register <username>
=i n

+ 4 +
pasowol ™ toTICgLoteLts (continues on next page)

10 Chapter 1. User Guide

Limnoria Documentation

(continued from previous page)

<Guest45020> +nickauth auth
<Yvzabevn> You are now authenticated as Mikaela.

1.3.5 Loading Plugins

Let’s take a look at loading other plugins. If you didn’t use supybot-wizard, though, you might do well to try it before
playing around with loading plugins yourself: each plugin has its own configure function that the wizard uses to setup
the appropriate registry entries if the plugin requires any.

If you do want to play around with loading plugins, you’re going to need to have the owner capability.

Remember earlier when I told you to try help load? That’s the very command you’ll be using. Basically, if you
want to load, say, the Games plugin, then 1oad Games. Simple, right? If you need a list of the plugins you can load,
you’ll have to list the directory the plugins are in (using whatever command is appropriate for your operating system,
either ‘Is’ or ‘dir’).

1.3.6 Understanding the help syntax
The syntax of a command describes how to run a command. The syntax is given by the help command. Some
examples:
help [<plugin>] [<command>] This is the help of command-plugin-help.
The chevrons mean you have to replace <plugin> and <command> by a plugin name and a command name.
The brackets mean the argument they wrap is optional.

So, the fellowing commands are correct:

<user> help

<user> help PluginName

<user> help PluginName CommandName
<user> help CommandName

ping takes no arguments This is the help for command-misc-ping.
I think it is clear enough.

join <channel> [<key>] This is the help for command-admin-join.
It requires a channel name, and the channel key is optional.

This two commands are ok:

<user> join #limnoria
<user> Jjoin #limnoria MySecretKey

utilities last <text> [<text>...] This is the help for command-utilities-last. By the way, there is another 1ast com-
mand in the Misc plugin, which doesn’t do the same thing, that’s why you need to give the plugin name.

You have to give at least one argument, but you can give as many as you wish.
1.3.7 Getting More From Your Limnoria

Another command you might find yourself needing somewhat often is the ‘more’ command. The IRC protocol limits
messages to 512 bytes, 60 or so of which must be devoted to some bookkeeping. Sometimes, however, Limnoria wants

1.3. Getting Started with Limnoria/Supybot 11

Limnoria Documentation

to send a message that’s longer than that. What it does, then, is break it into “chunks” and send the first one, following
it with (X more messages) where X is how many more chunks there are. To get to these chunks, use the more
command. One way to try is to look at the default value of supybot.replies.genericNoCapability — it’s so long that it’ll
stretch across two messages:

<jemfinch|lambda> S$config default
supybot.replies.genericNoCapability

<lambdaman> Jjemfinch|lambda: You're missing some capability
you need. This could be because you actually
possess the anti-capability for the capability
that's required of you, or because the channel
provides that anti-capability by default, or
because the global capabilities include that
anti-capability. Or, it could be because the
channel or the global defaultAllow is set to
False, meaning (1 more message)

<jemfinch|lambda> Smore

<lambdaman> Jjemfinch|lambda: that no commands are allowed
unless explicitly in your capabilities. Either
way, you can't do what you want to do.

So basically, the bot keeps, for each person it sees, a list of “chunks” which are “released” one at a time by the more
command. In fact, you can even get the more chunks for another user: if you want to see another chunk in the last
command jemfinch gave, for instance, you would just say more jemfinch after which, his “chunks” now belong to you.
So, you would just need to say more to continue seeing chunks from jemfinch’s initial command.

1.3.8 Final Word

You should now have a solid foundation for using Limnoria. You can use the /ist command to see what plugins your
bot has loaded and what commands are in those plugins; you can use the ‘help’ command to see how to use a specific
command, and you can use the ‘more’ command to continue a long response from the bot. With these three commands,
you should have a strong basis with which to discover the rest of the features of Limnoria!

Do be sure to read our other documentation and make use of the resources we provide for assistance; this website and,
of course, #limnoria on irc.libera.chat if you run into any trouble!

1.4 Configuration

1.4.1 Introduction

So you’ve got your Limnoria up and running and there are some things you don’t like about it. Fortunately for you,
chances are that these things are configurable, and this document is here to tell you how to configure them.

Configuration of Limnoria is handled via the Config plugin, which controls runtime access to Limnoria’s registry (the
configuration file generated by the ‘supybot-wizard’ program you ran). The Config plugin provides a way to get or set
variables, to list the available variables, and even to get help for certain variables. Take a moment now to read the help
for each of those commands: config, 1ist, and help. If you don’t know how to get help on those commands,
take a look at the GETTING_STARTED document.

1.4.2 Configuration Registry

Now, if you’re used to the Windows registry, don’t worry, Limnoria’s registry is completely different. For one, it’s
completely plain text. But there is at least one good idea in Windows’ registry: hierarchical configuration.

12 Chapter 1. User Guide

Limnoria Documentation

Limnoria’s configuration variables are organized in a hierarchy: variables having to do with the way Limnoria
makes replies all start with supybot.reply; variables having to do with the way a plugin works all start with supy-
bot.plugins.Plugin (where ‘Plugin’ is the name of the plugin in question). This hierarchy is nice because it means the
user isn’t inundated with hundreds of unrelated and unsorted configuration variables.

Some of the more important configuration values are located directly under the base group, supybot. Things like the
bot’s nick, its ident, etc. Along with these config values are a few subgroups that contain other values. Some of the
more prominent subgroups are: plugins (where all the plugin-specific configuration is held), reply (where variables
affecting the way a Limnoria makes its replies resides), replies (where all the specific standard replies are kept), and
directories (where all the directories a Limnoria uses are defined). There are other subgroups as well, but these are the
ones we’ll use in our example.

1.4.3 Configuration Groups

Using the Config plugin, you can list values in a subgroup and get or set any of the values anywhere in the configuration
hierarchy. For example, let’s say you wanted to see what configuration values were under the supybot (the base group)
hierarchy. You would simply issue this command:

<Mikaela> @config list supybot

<Limnoria> #alwaysJoinOnInvite, (@abuse, @capabilities, (@commands, (@databases, @debug,
—(@directories, (@drivers, (@log, (@networks, (@nick, @plugins, @protocols, @replies,_,
—(@reply, @servers, defaultIgnore, defaultSocketTimeout, externallIP, flush,_,
—followIdentificationThroughNickChanges, ident, language, pidFile, snarfThrottle,_,
—upkeepInterval, and user

These are all the configuration groups and values which are under the base supybot group. Actually, their full names
would each have a ‘supybot.” prepended to them, but it is omitted in the listing in order to shorten the output. The first
entries in the output are the groups (distinguished by the ‘@’ symbol in front of them), and the rest are the configuration
values. The ‘@’ symbol (like the ‘#” symbol we’ll discuss later) is simply a visual cue and is not actually part of the
name.

1.4.4 Configuration Values

Okay, now that you’ve used the Config plugin to list configuration variables, it’s time that we start looking at individual
variables and their values.

The first (and perhaps most important) thing you should know about each configuration variable is that they all have
an associated help string to tell you what they represent. So the first command we’ll cover is config help. To
see the help string for any value or group, simply use the config help command. For example, to see what this
supybot.snarfThrottle configuration variable is all about, we’d do this:

<jemfinch|lambda> @config help supybot.snarfThrottle

<supybot> jemfinch|lambda: A floating point number of seconds to
throttle snarfed URLs, in order to prevent loops between two
bots snarfing the same URLs and having the snarfed URL in
the output of the snarf message. (Current value: 10.0)

Pretty simple, eh?

Now if you’re curious what the current value of a configuration variable is, you’ll use the config command with one
argument, the name of the variable you want to see the value of:

<jemfinch|lambda> @config supybot.reply.whenAddressedBy.chars
<supybot> jemfinch|lambda: '@’

1.4. Configuration 13

Limnoria Documentation

To set this value, just stick an extra argument after the name:

<jemfinch|lambda> Qconfig supybot.reply.whenAddressedBy.chars @$
<supybot> jemfinch]|lambda: The operation succeeded.

Now check this out:

<jemfinch|lambda> $config supybot.reply.whenAddressedBy.chars
<supybot> jemfinch|lambda: '@S’'

Note that we used ‘$’ as our prefix character, and that the value of the configuration variable changed. If T were to use
the £1ush command now, this change would be flushed to the registry file on disk (this would also happen if I made
the bot quit, or pressed Ctrl-C in the terminal which the bot was running). Instead, I’ll revert the change:

<jemfinch|lambda> $config supybot.reply.whenAddressedBy.chars @
<supybot> jemfinch]|lambda: The operation succeeded.
<jemfinch|lambda> $note that this makes no response.

1.4.5 Default Values

If you’re ever curious what the default for a given configuration variable is, use the config default command:

<jemfinch|lambda> @config default supybot.reply.whenAddressedBy.chars
<supybot> jemfinch|lambda: ''

Thus, to reset a configuration variable to its default value, you can simply say:

<jemfinch|lambda> @config setdefault supybot.reply.whenAddressedBy.chars
<supybot> jemfinch|lambda: The operation succeeded.
<jemfinch|lambda> @note that this does nothing

Simple, eh?

1.4.6 Searching the Registry

Now, let’s say you want to find all configuration variables that might be even remotely related to opping. For that,
you’ll want the config search command. Check this out:

<Mikaela> @config search op

<Limnoria> supybot.plugins.AutoMode.op, supybot.plugins.AutoMode.halfop, supybot.
—plugins.ChannelStatus.topic, supybot.plugins.LinkRelay.topicSync, supybot.plugins.
—NoLatinl.operator, supybot.plugins.Services.ChanServ.op, supybot.plugins.Services.
—ChanServ.halfop, supybot.plugins.Topic, supybot.plugins.Topic.public, supybot.
—plugins.Topic.separator, supybot.plugins.Topic.format, (1 more message)

<Mikaela> @more

<@Limnoria> supybot.plugins.Topic.recognizeTopiclen, supybot.plugins.Topic.default,
—supybot.plugins.Topic.alwaysSetOnJoin, supybot.plugins.Topic.undo, supybot.plugins.
—Topic.undo.max, and supybot.plugins.Topic.requireManageCapability

Sure, it showed all the topic-related stuff in there, but it also showed you all the op-related stuff, too. Do note, however,
that you can only see configuration variables for plugins that are currently loaded or that you loaded in the past; if
you’ve never loaded a plugin there’s no way for the bot to know what configuration variables it registers.

14 Chapter 1. User Guide

Limnoria Documentation

1.4.7 Network- and Channel-Specific Configuration

Many configuration variables can be specific to individual channels. The Config plugin provides an easy way to
configure something for a specific channel; for instance, in order to set the prefix chars for a specific channel, do this
in that channel:

<jemfinch|lambda> @config channel supybot.reply.whenAddressedBy.chars !
<supybot> jemfinch]|lambda: The operation succeeded.

That’ll set the prefix chars in the channel from which the message was sent to ‘!’. Voila, channel-specific values! Also,
note that when using the Config plugin’s 1ist command, channel-specific values are preceeded by a ‘#’ character to
indicate such (similar to how ‘@’ is used to indicate a group of values).

Similarly, many configuration variables can be specific to individual networks. This works similarly by substituting
channel with network:

<jemfinch|lambda> @config network supybot.reply.whenAddressedBy.chars !
<supybot> jemfinch]|lambda: The operation succeeded.

Network-specific configuration values are preceeded by a “:” character. As most (if not all) channel-specific values are
also network-specific, they are preceeded by “#:’.

1.4.8 Editing the Configuration Values by Hand
NOTE: We don’t recommend this and you shouldn’t ever do this, you should do everything with the commands
in the Config plugin.

Some people might like editing their registry file directly rather than manipulating all these things through the
bot. For those people, we offer the config reload command, which reloads both registry configuration and
user/channel/ignore database configuration.

Just edit the interesting files and then give the bot the config reload command and it’ll work as expected. Do
note, however, that Limnoria flushes its configuration files and database to disk every hour or so, and if this happens
after you’ve edited your configuration files but before you reload your changes, you could lose the changes you made.
To prevent this, set the supybot.flush value to ‘Oft” while editing the files, and no automatic flushing will occur.

If you cannot access the bot on IRC and your bot is running on a POSIX system, you can also send it a SIGHUP
signal; it is exactly the same as config reload (note that the Config plugin has to be loaded to do that).

1.5 Identifying the bot to services

The different methods listed here are in the order how they are usually recommended by network operators.

Please also note that SASL and CertFP are only fully supported on Limnoria. Gribble has imported partial SASL
support (only PLAIN).

1.5.1 Registering to services

You can safely jump over this section if your bot is already registered to services.

First start by checking what is the syntax for registering with /msg nickserv help register. It returns you
something like this (Atheme 7.x):

1.5. Identifying the bot to services 15

Limnoria Documentation

NickServ: Syntax: REGISTER <password> <email-address>

Assuming that that is the syntax, we can register the bot with:

load Services
nickserv register mypassword bot@example.com

Or, on Limnoria versions older than 2021.06.15:

ircquote PRIVMSG NickServ :REGISTER mypassword bot@example.com

Note that the email address must be correct. Next check that /msg nickserv info bot doesn’t say something
about being unverified. If it does, go to the email address and run:

’nickserv VERIFY nick <code from the email>

Now your bot should be successfully registered and you can move to setting up automatic identifying below. If you
need to identify to services now, /msg nickserv help identify and following the syntax (I am still assuming
that you are on Atheme 7.x):

nickserv IDENTIFY username password

Note: the nickserv command was added in Limnoria 2021.06.15. If you have an older version, you need to run
something like ircquote privmsg nickserv :register ... instead (note the placement of the : after
nickserv and before the command name).

1.5.2 SASL PLAIN

To use SASL EXTERNAL, you must only configure CertFP and it’s attempted automatically. SASL PLAIN is identify-
ing using username and password, SASL EXTERNAL is identifying by using CertFP which is explained later on this
document. It doesn’t need username or password to be configured.

Note that SASL isn’t supported on all networks. As the only way to check if SASL is supported is either /quote
CAP LS (which usually gets eaten by bouncers) or connecting to the network and seeing if it works, we recommend
always configuring SASL and whoising the bot to see if it worked. If it didn’t work, you might want to ask the network
operators about their SASL support and request them to start supporting it.

SASL is widely agreed as the best method to identify to services as it identifies you before anyone (other than IRC
operators) can see that you are connected. To enable SASL, simply:

config networks.<network>.sasl.username AccountName
config networks.<network>.sasl.password P455w0Ord

where you of course replace AccountName and P455w0Ord with your actual NickServ account name and password.
Remember to replace <network> with the real network name like Libera.

1.5.3 CertFP

You can test if CertFP is supported by services simply by doing /msg NickServ cert. If you get an error about
“Insufficient parameters for CERT”, CertFP is supported, and if you get an error about unknown command, it’s not
supported.

CertFP identifies you to services using a client (SSL) certificate and naturally requires an SSL connection. It doesn’t
identify you as soon as SASL, but unlike SASL, it identifies you even when services return from a netsplit, unlike any
other mechanism.

16 Chapter 1. User Guide

Limnoria Documentation

First you must generate a certificate, and the easiest method is probably using OpenSSL which you should have even
on Windows if you installed with pip:

openssl req —nodes -—newkey rsa:4096 —-keyout <BOT>.pem -x509 -days 3650 —-out <BOT>.pem,
——-subj "/CN=<BOT>"

Now you should have a <BOT> . pem file in the directory where you ran the command, presumably your home direc-
tory and you only tell your bot where to find it and tell NickServ that it belongs to you. Note that you should replace
<BOT> with the account name of your bot.

You have two choices, using the same certificate on all networks:

’config protocols.irc.certfile /home/<username>/<BOT>.pem

or only on one or more network where it’s manually configured:

’config networks.<network>.certfile /home/<username>/<BOT>.pem

And lastly, you must tell the services what is your certificate fingerprint, which you can find out with:

’openssl x509 -shal -noout —-fingerprint -in <BOT>.pem | tr -d ':' | tr '"A-Z' 'a-z'

This results in something like 05dd01fedcl1b821b796d0d785160£03e32£53fa8 which you tell your bot to
tell services:

’nickserv cert add 05dd01fedclb821b796d0d785160£f03e32f53fa8

Or if your bot identifies as you, you can do that by yourself with:

’/msg NickServ cert add 05dd01fedclb821b796d0d785160£03e32f53fa8

Remember to replace 05dd01£fedclb821b796d0d785160£03e32£53fa8 with your own fingerprint! Next
time your bot connects, it should get identified automatically.

1.5.4 SASL ECDSA-NIST256P-CHALLENGE

First you must ECDSA key for the bot to use:

openssl ecparam -name prime256v1l —-genkey -out <bot>_ecdsa.pem

and get the public key using:

1A

openssl ec —noout —-text —-conv_form compressed —-in <bot>_ecdsa.pem | grep
| tail -n 3 | tr -d ' \n:' | xxd -r -p | base64

pub:' -A 3

[

After getting the public key, you must tell your bot to use it and tell services about it (just like with CertFP/SASL
EXTERNAL):

config supybot.networks.<network>.sasl.username AccountName
config supybot.networks.<network>.sasl.ecdsa_key /home/<username>/<BOT>_ecdsa.pem
nickserv set pubkey PUBKEY_WHICH_YOU_GOT_EARLIER

and after reconnecting, the bot should successfully identify using SASL ECDSA-NIST256P-CHALLENGE.

NOTE: You can use ecdsa pubkey to get the public key, but you cannot generate the key pair using it as pyecdsa
doesn’t support ecdsatool generated keys.

1.5. Ildentifying the bot to services 17

Limnoria Documentation

1.5.5 Server password

Many networks support identifying using username : password as server password. If this is the case with your
network (anything that uses a charybdis-like IRCd), this should work for you. Note that this identifies you after SASL
s0, your real host might be seen. To do this, simply:

config networks.<network>.password username:password

Replace <network> with the name of network, for example Libera and username:password with your real user-
name and password.

ZNC

If you wish to connect your bot to ZNC, the recommended way is:

config networks.<network>.ident <username>(@<identifier>/<network>
config networks.<network>.password <password>

The identifier is free text to describe which client your Limnoria is. It came with ZNC 1.6.0 and is completely optional.
<network> again has been there since ZNC 1.0 which is very old and has multiple security issues that have been
fixed since then. You should always run the latest release.

1.5.6 Services plugin

The Services plugin comes with Limnoria and should be an easy way to identify your bot, but SASL is recommended
over it. Start by loading Services with:

load Services

and then tell it what NickServ and ChanServ are called:

config network [<network>] plugins.services.nickserv NickServ
config network [<network>] plugins.services.chanserv ChanServ

[<network>] is only necessary if the message isn’t sent in the network itself. Remember to replace Nick-
Serv/ChanServ with their real names if they have a different name on any network.

If you wish to ensure that your bot never contacts an user impersonating NickServ, you may specify the server name
from /MAP command (in your IRC client), e.g. on Libera.Chat:

config network [<network>] plugins.services.nickserv NickServ@services.
config network [<network>] plugins.services.chanserv ChanServ@services.

Now you can set your password:

services password Bot P455w0Ord

makes the bot attempt identifying as Bot using password P455w0rd. Replace them with your real nickname and
password. Note that if you have multiple nicknames, you must run services password for them all.

If your bot happens to get a nickname that isn’t configured, it won’t know how to identify. You might be able to
avoid this issue by loading NickCapture, (load NickCapture) which attempts to regain the primary nick, when
it’s possible, and when it regains the primary nick, the identification should work.

18 Chapter 1. User Guide

Limnoria Documentation

1.6 Capabilities

1.6.1 Introduction

Ok, some explanation of the capabilities system is probably in order. With most IRC bots (including the ones I've
written myself prior to this one) “what a user can do” is set in one of two ways. On the really simple bots, each user
has a numeric “level” and commands check to see if a user has a “high enough level” to perform some operation.
On bots that are slightly more complicated, users have a list of “flags” whose meanings are hardcoded, and the bot
checks to see if a user possesses the necessary flag before performing some operation. Both methods, IMO, are rather
arbitrary, and force the user and the programmer to be unduly confined to less expressive constructs.

This bot is different. Every user has a set of “capabilities” that is consulted every time they give the bot a command.
Commands, rather than checking for a user level of 100, or checking if the user has an ‘0’ flag, are instead able to
check if a user has the ‘owner’ capability. At this point such a difference might not seem revolutionary, but at least we
can already tell that this method is self-documenting, and easier for users and developers to understand what’s truly
going on.

1.6.2 User Capabilities

What the heck can these capabilities DO?

If that was all, well, the capability system would be cool, but not many people would say it was awesome. But
it is awesome! Several things are happening behind the scenes that make it awesome, and these are things that
couldn’t happen if the bot was using numeric userlevels or single-character flags. First, whenever a user issues the
bot a command, the command dispatcher checks to make sure the user doesn’t have the “anticapability” for that
command. An anticapability is a capability that, instead of saying “what a user can do”, says what a user cannot do.
It’s formed rather simply by adding a dash (*-’) to the beginning of a capability; ‘rot13’ is a capability, and ‘-rot13’ is
an anticapability.

Anyway, when a user issues the bot a command, perhaps ‘calc’ or ‘help’, the bot first checks to make sure the user
doesn’t have the ‘-calc’ or the ‘-help’ (anti)capabilities before even considering responding to the user. So commands
can be turned on or off on a per user basis, offering fine-grained control not often (if at all!) seen in other bots. This
can be further refined by limiting the (anti)capability to a command in a specific plugin or even an entire plugin. For
example, the rot13 command is in the Filter plugin. If a user should be able to use another rot13 command, but not the
one in the Format plugin, they would simply need to be given ‘-Format.rot13’ anticapability. Similarly, if a user were
to be banned from using the Filter plugin altogether, they would simply need to be given the ‘-Filter’ anticapability.

1.6.3 Channel Capabilities

What if #linux wants completely different capabilities from #windows?

But that’s not all! The capabilities system also supports channel capabilities, which are capabilities that only apply
to a specific channel; they’re of the form ‘#channel,capability’. Whenever a user issues a command to the bot in a
channel, the command dispatcher also