
Limnoria Documentation
Version 0.83.4.1+limnoria

The Limnoria/Gribble/Supybot contributors

oct. 11, 2018





Table des matières

1 The Supybot user guide 3
1.1 Installing Limnoria on GNU/Linux and UNIX (FreeBSD, macOS, . . . ) . . . . . . . . . . . . . . . . 3
1.2 Installing Limnoria on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Getting Started with Supybot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Identifying the bot to services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Capacités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Security in Limnoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8 Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Using the HTTP server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.10 Restarting the bot automatically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Developing plugins for Limnoria 33
2.1 Generic documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Specific documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3 Library reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Contributing to Limnoria 87
3.1 Contributing to Limnoria as a developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2 Translating Limnoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Indexes et tableaux 91

Index des modules Python 93

i



ii



Limnoria Documentation, Version 0.83.4.1+limnoria

Sommaire :

Table des matières 1



Limnoria Documentation, Version 0.83.4.1+limnoria

2 Table des matières



CHAPITRE 1

The Supybot user guide

1.1 Installing Limnoria on GNU/Linux and UNIX (FreeBSD, macOS,
. . . )

This is the « easy to follow » guide to installing Limnoria. The installation documentation provided with the supybot
distribution is really quite good already, but since people keep coming to IRC, asking a repeating pattern of questions,
we thought it would be a good idea to expand it a bit to make it a little more of a « foolproof guide ».

This guide is for non-Windows operating systems. If you want to install on Windows, check out the Windows install
guide.

Note : Limnoria is a modified version of Supybot.

1.1.1 Install

Install using your OS” package manager

On Debian (8.0 and above)

sudo aptitude install limnoria

If you have Debian 8.0 (Jessie), this command won’t work unless you have Backports repositories configured.

On Ubuntu (16.10 and above)

sudo apt-get install limnoria

3

https://wiki.debian.org/Backports


Limnoria Documentation, Version 0.83.4.1+limnoria

On Fedora (23 and above)

sudo dnf install limnoria

On CentOS and Red Hat Enterprise Linux

You have to first add the EPEL repository (EL7, EL6, EL5) before being able to install the package on CentOS /
RHEL. Once you have, you can run the following command to install Limnoria :

sudo yum install limnoria

On FreeBSD

Port :

cd /usr/ports/irc/py-limnoria && sudo PYTHON_VERSION=3.5 make install clean

You can omit PYTHON_VERSION=3.5 if you want to build for Python 2.7, or if you have
DEFAULT_VERSIONS=python=3.5 in /etc/make.conf.

Package :

sudo pkg install py27-limnoria

On Archlinux

You can install Limnoria from AUR.

On Gentoo

sudo emerge net-irc/limnoria

With Guix and GuixSD

guix package --install limnoria

Other operating systems (manual install)

If you followed the section above, skip this one.

Dependencies

The only mandatory dependency is Python 2.6 or greater. However, it is highly recommended you use Python 3.4 or
greater.

You may also install chardet and feedparser, which are used by Limnoria if they are available.

4 Chapitre 1. The Supybot user guide

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-5.noarch.rpm
https://aur.archlinux.org/packages/limnoria-python3-git/
http://www.python.org/


Limnoria Documentation, Version 0.83.4.1+limnoria

The remaining of this guide will assume you have Python 3. If you don’t, replace python3 by python in the given
commands

Install Python

Python will usually come by installed by default in your distribution. If not, grab the appropriate packages from the
distribution’s repository, or download it from http://python.org.

If you’re installing Python using your distribution’s packages, you may need a “”python-dev”” or “”python-devel””
package installed, too. To see if this is the case, open up a terminal, start python, and run :

import distutils

If it works, you’re good to go. Otherwise, install the python3-dev or python3-devel package and try again.

You may also install « manually » by downloading the source archive from http://python.org, and compiling it. That
is outside the scope of this guide, however.

Install Limnoria

In the next section of this guide we will use pip, which is a generic way of installing Python software.

There are some alternative install methods at the bottom of this guide, if you don’t want to use pip.

Global installation (with root access)

If you do not have root access, skip this section.

If you are logged in as root, you can remove sudo from the install commands.

In case you want to use the testing branch which might be more up-to date BUT LESS TESTED, replace ‘‘master‘‘
with ‘‘testing‘‘ in the commands.

First we install Limnoria’s optional dependencies (you can skip this step, but some features won’t be available) :

sudo python3 -m pip install -r https://raw.githubusercontent.com/ProgVal/Limnoria/
→˓master/requirements.txt --upgrade

And then Limnoria itself :

sudo python3 -m pip install limnoria --upgrade

If you have an error saying No module named pip, install pip using your package manager (the package is usually
named python3-pip).

Local installation (without root access)

If you have followed the previous section, skip this one.

Simply add --user to the end of both commands. First we install requirements (you can skip it, but some features
won’t be available) and then Limnoria itself. :

python3 -m pip install -r https://raw.githubusercontent.com/ProgVal/Limnoria/master/
→˓requirements.txt --user --upgrade
python3 -m pip install limnoria --user --upgrade

1.1. Installing Limnoria on GNU/Linux and UNIX (FreeBSD, macOS, . . . ) 5

http://python.org
http://python.org
http://pip.readthedocs.org/en/latest/installing.html#install-pip


Limnoria Documentation, Version 0.83.4.1+limnoria

You might need to add $HOME/.local/bin to your PATH. :

echo 'PATH="$HOME/.local/bin:$PATH"' >> ~/.$(echo $SHELL|cut -d/ -f3)rc
source ~/.$(echo $SHELL|cut -d/ -f3)rc

If you have an error saying No module named pip, install pip using this guide : https://pip.pypa.io/en/stable/installing/

1.1.2 Configuration

We are now ready to configure Supybot. Supybot creates quite a few auxiliary files/directories to store its runtime data.
It is thus recommended to create an empty directory from which you’ll be running supybot, to keep all the data in a
nice dedicated location. For example, you may create a “runbot” directory inside your home directory.

Now you can cd to your “runbot” directory, and from within it run supybot-wizard, which will walk you through
a series of questions to generate the bot config file.

One thing to make sure to do in the wizard, to make your life easier down the line, is to select y for the Would you like
to add an owner user for your bot ? question, and actually create the owner user. Remember that password, so that you
can later “”identify”” with the bot on IRC and administer it.

Once you generate the config file, which will be named yourbotnick.conf (where « yourbotnick » is the nick
you have chosen for your bot in the wizard), it will be placed in your “runbot” directory. (As long as you leave the
default answer to the “”Where would you like to create these directories ?”” question.)

Now to start the bot, run, still from within the “runbot” directory :

supybot yourbotnick.conf

And watch the magic !

For a tutorial on using and managing the bot from here on, see the Supybook.

1.1.3 Alternative install methods

If you know what you are doing and you don’t want to use pip, you can use one of these methods :
— Download a .deb or .rpm package at ProgVal’s build repo.
— Use git to clone the Limnoria repository and follow the instructions in Limnoria’s README.md.
— Click the « Download ZIP » button at the Limnoria repository. Then, extract the zipball to some temporary

directory, and cd into the Limnoria-master directory which contains the extracted code.

1.2 Installing Limnoria on Windows

This is the « easy to follow » guide to installing Limnoria. The installation documentation provided with the supybot
distribution is really quite good already, but since people keep coming to IRC, asking a repeating pattern of questions,
we thought it would be a good idea to expand it a bit to make it a little more of a « foolproof guide ».

This guide is only for Windows. If you don’t want to install on Windows, check out the :ref :‘non-Windows install
guide <use-install>‘_.

Note : Limnoria is a modified version of Supybot.

6 Chapitre 1. The Supybot user guide

https://pip.pypa.io/en/stable/installing/
http://supybook.fealdia.org/
https://builds.progval.net/limnoria/
http://git-scm.com/
https://github.com/ProgVal/Limnoria
https://github.com/ProgVal/Limnoria/blob/testing/README.md#installing-from-cloned-repo
https://github.com/ProgVal/Limnoria


Limnoria Documentation, Version 0.83.4.1+limnoria

1.2.1 Install

Install Python

Download the latest Python 3 installer from https://www.python.org, 3.5.1, as of 2016-01-26) and run it to install
Python.

Installing Python is mostly clicking next, but in the next screen remember the destination directory where you installed
Python. These instructions refer to it as C:\Python35\ which is the current name on 2016-01-26.

Then you are asked to customize your installation. Click the drive on left side of « Python » text and select « Entire
feature will be installed on local hard drive ».

Now Python installs itself which may take several minutes.

Python should be now installed and you can check that the « python » command points to correct python. Open
cmd.exe (press the Windows button on your keyboard and type « cmd.exe ») and run where python and the
toppernmost entry should be C:\Python35\python.exe.

Install Supybot

Now we are ready to install Limnoria and it’s requirements. Open cmd.exe as Administrator (right click it in the
previous place) and run :

python3 -m pip install -r https://raw.githubusercontent.com/ProgVal/Limnoria/master/
→˓requirements.txt --upgrade
python3 -m pip install limnoria --upgrade

We are now ready to configure Supybot. Supybot creates quite a few auxiliary files/directories to store its runtime data.
It is thus recommended to create an empty directory from which you’ll be running supybot, to keep all the data in a
nice dedicated location. For example, you may create a C:\Users\<username>\runbot for this purpose.

1.2.2 Configure Supybot

Now you open cmd.exe as normal user, and create and cd into your runbot directory :

mkdir runbot
cd runbot

and from within it run supybot-wizard :

python3 C:\Python35\Scripts\supybot-wizard

which will walk you through a series of questions to generate the bot config file.

One thing to make sure to do in the wizard, to make your life easier down the line, is to select y for the Would you like
to add an owner user for your bot ? question, and actually create the owner user. Remember that password, so that you
can later “”identify”” with the bot on IRC and administer it.

Once you generate the config file, which will be named yourbotnick.conf (where yourbotnick is the nick
you have chosen for your bot in the wizard), it will be placed in your runbot directory. (As long as you leave the
default answer to the Where would you like to create these directories ? question.)

Now to start the bot, run, still from within the C:\users\<username>\runbot directory :

python3 C:\Python35\Scripts\supybot yourbotnick.conf

1.2. Installing Limnoria on Windows 7

https://www.python.org


Limnoria Documentation, Version 0.83.4.1+limnoria

And watch the magic !

This guide has been mainly written by nanotube (Daniel Folkinshteyn), and is licensed under the Creative Commons
Attribution ShareAlike 3.0 Unported license and/or the GNU Free Documentation License v 1.3 or later.

1.3 Getting Started with Supybot

1.3.1 Introduction

Ok, so you’ve decided to try out Supybot. That’s great ! The more people who use Supybot, the more people can
submit bugs and help us to make it the best IRC bot in the world :)

You should have already read through our install document (if you had to manually install) before reading any further.
Now we’ll give you a whirlwind tour as to how you can get Supybot setup and use Supybot effectively.

1.3.2 Initial Setup

Now that you have Supybot installed, you’ll want to get it running. The first thing you’ll want to do is run supybot-
wizard. Before running supybot-wizard, you should be in the directory in which you want your bot-related files to
reside. The wizard will walk you through setting up a base config file for your Supybot. Once you’ve completed the
wizard, you will have a config file called botname.conf. In order to get the bot running, run supybot botname.
conf.

1.3.3 Listing Commands

Ok, so let’s assume your bot connected to the server and joined the channels you told it to join. For now we’ll assume
you named your bot “supybot” (you probably didn’t, but it’ll make it much clearer in the examples that follow to
assume that you did). We’ll also assume that you told it to join #channel (a nice generic name for a channel, isn’t
it ? :)) So what do you do with this bot that you just made to join your channel ? Try this in the channel :

supybot: list

Replacing “supybot” with the actual name you picked for your bot, of course. Your bot should reply with a list of the
plugins it currently has loaded. At least Admin, Channel, Config, Misc, Owner, and User should be there ; if you used
supybot-wizard to create your configuration file you may have many more plugins loaded. The list command can also
be used to list the commands in a given plugin :

supybot: list Misc

will list all the commands in the Misc plugin. If you want to see the help for any command, just use the help command :

supybot: help help
supybot: help list
supybot: help load

Sometimes more than one plugin will have a given command ; for instance, the « list » command exists in both the
Misc and Config plugins (both loaded by default). List, in this case, defaults to the Misc plugin, but you may want to
get the help for the list command in the Config plugin. In that case, you’ll want to give your command like this :

supybot: help config list

8 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

Anytime your bot tells you that a given command is defined in several plugins, you’ll want to use this syntax (« plugin
command ») to disambiguate which plugin’s command you wish to call. For instance, if you wanted to call the Config
plugin’s list command, then you’d need to say :

supybot: config list

Rather than just “list”.

1.3.4 Making Supybot Recognize You

For making the bot to identify to services, please see identifying to services.

If you ran the wizard, then it is almost certainly the case that you already added an owner user for yourself. If not,
however, you can add one via the handy-dandy “supybot-adduser” script. You’ll want to run it while the bot is not
running (otherwise it could overwrite supybot-adduser’s changes to your user database before you get a chance to
reload them). Just follow the prompts, and when it asks if you want to give the user any capabilities, say yes and then
give yourself the “owner” capability, restart the bot and you’ll be ready to load some plugins !

Now, in order for the bot to recognize you as your owner user, you’ll have to identify with the bot.

Open up a query window in your irc client (“/query” should do it ; if not, just know that you can’t identify in a channel
because it requires sending your password to the bot). Then type this :

help identify

And follow the instructions ; the command you send will probably look like this, with “myowneruser” and “myuser-
password” replaced :

identify myowneruser myuserpassword

The bot will tell you that “The operation succeeded” if you got the right name and password. Now that you’re identified,
you can do anything that requires any privilege : that includes all the commands in the Owner and Admin plugins,
which you may want to take a look at (using the list and help commands, of course). One command in particular that
you might want to use (it’s from the User plugin) is the “hostmask add” command : it lets you add a hostmask to your
user record so the bot recognizes you by your hostmask instead of requiring you always to identify with it before it
recognizes you. Use the “help” command to see how this command works. Here’s how I often use it :

hostmask add myuser [hostmask] mypassword

You may not have seen that “[hostmask]” syntax before. Supybot allows nested commands, which means that any
command’s output can be nested as an argument to another command. The hostmask command from the Misc plugin
returns the hostmask of a given nick, but if given no arguments, it returns the hostmask of the person giving the
command. So the command above adds the hostmask I’m currently using to my user’s list of recognized hostmasks.
I’m only required to give mypassword if I’m not already identified with the bot.

It might often be better to specify the hostmask by yourself instead of nesting the hostmask command as the hostmask
command gives your exact hostmask of that moment meaning nick!ident@host which means that you will get
unidentified if you change your nickname.

I (Mikaela) often specify hostmasks in two other forms depending on the situation which I go through in next subtopics.

Wildcard nick

In case my username and host stay the same or there aren’t bots on same server which could get identified as me to
other bots, I use :

1.3. Getting Started with Supybot 9



Limnoria Documentation, Version 0.83.4.1+limnoria

user hostmask add myuser *!myident@myhost

I only recommend this if there is ident server configured and the IRC network checks for it.

Host only

In case I am the only one who has the same host (cloaks/vhosts on many networks which have account in them, (for
example freenode) or server where no one else has access and no bots share it either), I use :

user hostmask add myuser *!*@mycloak

Mycloak at freenode is usually in format unaffiliated/accountname. You can usually request hostmasks
using HostServ, /msg HostServ help, or asking on help channel of your IRC network, in case of freenode that
is #freenode. OFTC is exception to this and uses /msg NickServ set cloak on, but whatever your network
users, you can ask it on their help channel.

Limnoria

Limnoria has two additional methods to identify, GPG and NickAuth, each provided as a plugin that you need to load
(with the load command).

GPG

First you must associate your GPG key with your Limnoria account. The gpg add command takes two arguments, key
id and key server.

My key is 0x0C207F07B2F32B67 and it’s on keyserver pool.sks-keyservers.net so and now I add it to my bot :

<Mikaela> +gpg add 0x0C207F07B2F32B67 pool.sks-keyservers.net
<Yvzabevn> 1 key imported, 0 unchanged, 0 not imported.

Now I can get token to sign so I can identify :

<Guest45020> +gpg gettoken
<Yvzabevn> Your token is: {03640620-97ea-4fdf-b0c3-ce8fb62f2dc5}. Please sign it with
→˓your GPG key, paste it somewhere, and call the 'auth' command with the URL to the
→˓(raw) file containing the signature.

Then I follow the instructions and sign my token in terminal :

echo "{03640620-97ea-4fdf-b0c3-ce8fb62f2dc5}"|gpg --clearsign|curl -F 'sprunge=<-'
→˓http://sprunge.us

Note that I sent the output to curl with flags to directly send the clearsigned content to sprunge.us pastebin. Curl
should be installed on most of distributions and comes with msysgit. If you remove the curl part, you get the output to
terminal and can pastebin it to any pastebin of your choice. Sprunge.us has only plain text and is easy so I used it in
this example.

And last I give the bot link to the plain text signature :

<Guest45020> +gpg auth http://sprunge.us/DUdd
<Yvzabevn> You are now authenticated as Mikaela.

10 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

NickAuth

This requires you to load the NickAuth plugin (see next section of this page for loading plugins).

NickAuth allows you to identify to the bot using your NickServ account. First I add my NickServ account name which
I can see with « /whois Mikaela Mikaela » (because my current nick is Mikaela). It gives me something like :

[Mikaela] is logged in as Mikaela

Now I tell the bot add my NickServ account Mikaela to my bot user on freenode. The syntax is [<network>] <bot-
username> <NickServ-account> :

<Mikaela> +nickauth nick add freenode Mikaela Mikaela
<Yvzabevn> OK.

Next time when I identify to NickServ I will get identified automatically if the bot sees that I was identified when I
joined. This requires server to support extended-join and WHOX. Most of modern networks support them, but if your
bot is using some bouncer, it might not support them.

Automatic identification doesn’t work always even when it’s supported, but when it fails, I can always use the Ni-
ckAuth Auth command to identify to the bot :

<Guest45020> +whoami
<Yvzabevn> I don't recognize you. You can messsage me either of these two commands:
→˓"user identify <username> <password>" to log in or "user register <username>
→˓<password>" to register.
<Guest45020> +nickauth auth
<Yvzabevn> You are now authenticated as Mikaela.

1.3.5 Loading Plugins

Let’s take a look at loading other plugins. If you didn’t use supybot-wizard, though, you might do well to try it before
playing around with loading plugins yourself : each plugin has its own configure function that the wizard uses to setup
the appropriate registry entries if the plugin requires any.

If you do want to play around with loading plugins, you’re going to need to have the owner capability.

Remember earlier when I told you to try help load ? That’s the very command you’ll be using. Basically, if you
want to load, say, the Games plugin, then load Games. Simple, right ? If you need a list of the plugins you can load,
you’ll have to list the directory the plugins are in (using whatever command is appropriate for your operating system,
either “ls” or “dir”).

1.3.6 Understanding the help syntax

The syntax of a command describes how to run a command. The syntax is given by the help command. Some
examples :

help [<plugin>] [<command>] This is the help of command-plugin-help.
The chevrons mean you have to replace <plugin> and <command> by a plugin name and a command name.
The brackets mean the argument they wrap is optional.
So, the fellowing commands are correct :

help
help PluginName
help PluginName CommandName
help CommandName

1.3. Getting Started with Supybot 11



Limnoria Documentation, Version 0.83.4.1+limnoria

ping takes no arguments This is the help for command-misc-ping.
I think it is clear enough.

join <channel> [<key>] This is the help for command-admin-join.
It requires a channel name, and the channel key is optional.
This two commands are ok :

join #limnoria
join #limnoria MySecretKey

utilities last <text> [<text> . . . ] This is the help for command-utilities-last. By the way, there is another last
command in the Misc plugin, which doesn’t do the same thing, that’s why you need to give the plugin name.
You have to give at least one argument, but you can give as many as you wish.

1.3.7 Getting More From Your Supybot

Another command you might find yourself needing somewhat often is the “more” command. The IRC protocol limits
messages to 512 bytes, 60 or so of which must be devoted to some bookkeeping. Sometimes, however, Supybot wants
to send a message that’s longer than that. What it does, then, is break it into « chunks » and send the first one, following
it with (X more messages) where X is how many more chunks there are. To get to these chunks, use the more
command. One way to try is to look at the default value of supybot.replies.genericNoCapability – it’s so long that it’ll
stretch across two messages :

<jemfinch|lambda> $config default
supybot.replies.genericNoCapability

<lambdaman> jemfinch|lambda: You're missing some capability
you need. This could be because you actually
possess the anti-capability for the capability
that's required of you, or because the channel
provides that anti-capability by default, or
because the global capabilities include that
anti-capability. Or, it could be because the
channel or the global defaultAllow is set to
False, meaning (1 more message)

<jemfinch|lambda> $more
<lambdaman> jemfinch|lambda: that no commands are allowed

unless explicitly in your capabilities. Either
way, you can't do what you want to do.

So basically, the bot keeps, for each person it sees, a list of « chunks » which are « released » one at a time by the
more command. In fact, you can even get the more chunks for another user : if you want to see another chunk in the
last command jemfinch gave, for instance, you would just say more jemfinch after which, his « chunks » now belong
to you. So, you would just need to say more to continue seeing chunks from jemfinch’s initial command.

1.3.8 Final Word

You should now have a solid foundation for using Supybot. You can use the list command to see what plugins your
bot has loaded and what commands are in those plugins ; you can use the “help” command to see how to use a specific
command, and you can use the “more” command to continue a long response from the bot. With these three commands,
you should have a strong basis with which to discover the rest of the features of Supybot !

Do be sure to read our other documentation and make use of the resources we provide for assistance ; this website and,
of course, #supybot on irc.freenode.net if you run into any trouble !

12 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

1.4 Configuration

1.4.1 Introduction

So you’ve got your Supybot up and running and there are some things you don’t like about it. Fortunately for you,
chances are that these things are configurable, and this document is here to tell you how to configure them.

Configuration of Supybot is handled via the Config plugin, which controls runtime access to Supybot’s registry (the
configuration file generated by the “supybot-wizard” program you ran). The Config plugin provides a way to get or set
variables, to list the available variables, and even to get help for certain variables. Take a moment now to read the help
for each of those commands : config, list, and help. If you don’t know how to get help on those commands,
take a look at the GETTING_STARTED document.

1.4.2 Configuration Registry

Now, if you’re used to the Windows registry, don’t worry, Supybot’s registry is completely different. For one, it’s
completely plain text. But there is at least one good idea in Windows” registry : hierarchical configuration.

Supybot’s configuration variables are organized in a hierarchy : variables having to do with the way Supybot
makes replies all start with supybot.reply ; variables having to do with the way a plugin works all start with supy-
bot.plugins.Plugin (where “Plugin” is the name of the plugin in question). This hierarchy is nice because it means the
user isn’t inundated with hundreds of unrelated and unsorted configuration variables.

Some of the more important configuration values are located directly under the base group, supybot. Things like the
bot’s nick, its ident, etc. Along with these config values are a few subgroups that contain other values. Some of the
more prominent subgroups are : plugins (where all the plugin-specific configuration is held), reply (where variables
affecting the way a Supybot makes its replies resides), replies (where all the specific standard replies are kept), and
directories (where all the directories a Supybot uses are defined). There are other subgroups as well, but these are the
ones we’ll use in our example.

1.4.3 Configuration Groups

Using the Config plugin, you can list values in a subgroup and get or set any of the values anywhere in the configuration
hierarchy. For example, let’s say you wanted to see what configuration values were under the supybot (the base group)
hierarchy. You would simply issue this command :

<Mikaela> @config list supybot
<Limnoria> #alwaysJoinOnInvite, @abuse, @capabilities, @commands, @databases, @debug,
→˓@directories, @drivers, @log, @networks, @nick, @plugins, @protocols, @replies,
→˓@reply, @servers, defaultIgnore, defaultSocketTimeout, externalIP, flush,
→˓followIdentificationThroughNickChanges, ident, language, pidFile, snarfThrottle,
→˓upkeepInterval, and user

These are all the configuration groups and values which are under the base supybot group. Actually, their full names
would each have a “supybot.” prepended to them, but it is omitted in the listing in order to shorten the output. The
first entries in the output are the groups (distinguished by the “@” symbol in front of them), and the rest are the
configuration values. The “@” symbol (like the “#” symbol we’ll discuss later) is simply a visual cue and is not
actually part of the name.

1.4.4 Configuration Values

Okay, now that you’ve used the Config plugin to list configuration variables, it’s time that we start looking at individual
variables and their values.

1.4. Configuration 13



Limnoria Documentation, Version 0.83.4.1+limnoria

The first (and perhaps most important) thing you should know about each configuration variable is that they all have
an associated help string to tell you what they represent. So the first command we’ll cover is config help. To
see the help string for any value or group, simply use the config help command. For example, to see what this
supybot.snarfThrottle configuration variable is all about, we’d do this :

<jemfinch|lambda> @config help supybot.snarfThrottle
<supybot> jemfinch|lambda: A floating point number of seconds to

throttle snarfed URLs, in order to prevent loops between two
bots snarfing the same URLs and having the snarfed URL in
the output of the snarf message. (Current value: 10.0)

Pretty simple, eh ?

Now if you’re curious what the current value of a configuration variable is, you’ll use the config command with one
argument, the name of the variable you want to see the value of :

<jemfinch|lambda> @config supybot.reply.whenAddressedBy.chars
<supybot> jemfinch|lambda: '@'

To set this value, just stick an extra argument after the name :

<jemfinch|lambda> @config supybot.reply.whenAddressedBy.chars @$
<supybot> jemfinch|lambda: The operation succeeded.

Now check this out :

<jemfinch|lambda> $config supybot.reply.whenAddressedBy.chars
<supybot> jemfinch|lambda: '@$'

Note that we used “$” as our prefix character, and that the value of the configuration variable changed. If I were to use
the flush command now, this change would be flushed to the registry file on disk (this would also happen if I made
the bot quit, or pressed Ctrl-C in the terminal which the bot was running). Instead, I’ll revert the change :

<jemfinch|lambda> $config supybot.reply.whenAddressedBy.chars @
<supybot> jemfinch|lambda: The operation succeeded.
<jemfinch|lambda> $note that this makes no response.

1.4.5 Default Values

If you’re ever curious what the default for a given configuration variable is, use the config default command :

<jemfinch|lambda> @config default supybot.reply.whenAddressedBy.chars
<supybot> jemfinch|lambda: ''

Thus, to reset a configuration variable to its default value, you can simply say :

<jemfinch|lambda> @config setdefault supybot.reply.whenAddressedBy.chars
<supybot> jemfinch|lambda: The operation succeeded.
<jemfinch|lambda> @note that this does nothing

Simple, eh ?

1.4.6 Searching the Registry

Now, let’s say you want to find all configuration variables that might be even remotely related to opping. For that,
you’ll want the config search command. Check this out :

14 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

<Mikaela> @config search op
<Limnoria> supybot.plugins.AutoMode.op, supybot.plugins.AutoMode.halfop, supybot.
→˓plugins.ChannelStatus.topic, supybot.plugins.LinkRelay.topicSync, supybot.plugins.
→˓NoLatin1.operator, supybot.plugins.Services.ChanServ.op, supybot.plugins.Services.
→˓ChanServ.halfop, supybot.plugins.Topic, supybot.plugins.Topic.public, supybot.
→˓plugins.Topic.separator, supybot.plugins.Topic.format, (1 more message)
<Mikaela> @more
<@Limnoria> supybot.plugins.Topic.recognizeTopiclen, supybot.plugins.Topic.default,
→˓supybot.plugins.Topic.alwaysSetOnJoin, supybot.plugins.Topic.undo, supybot.plugins.
→˓Topic.undo.max, and supybot.plugins.Topic.requireManageCapability

Sure, it showed all the topic-related stuff in there, but it also showed you all the op-related stuff, too. Do note, however,
that you can only see configuration variables for plugins that are currently loaded or that you loaded in the past ; if
you’ve never loaded a plugin there’s no way for the bot to know what configuration variables it registers.

1.4.7 Channel-Specific Configuration

Many configuration variables can be specific to individual channels. The Config plugin provides an easy way to confi-
gure something for a specific channel ; for instance, in order to set the prefix chars for a specific channel, do this in
that channel :

<jemfinch|lambda> @config channel supybot.reply.whenAddressedBy.chars !
<supybot> jemfinch|lambda: The operation succeeded.

That’ll set the prefix chars in the channel from which the message was sent to “ !”. Voila, channel-specific values ! Also,
note that when using the Config plugin’s list command, channel-specific values are preceeded by a “#” character to
indicate such (similar to how “@” is used to indicate a group of values).

1.4.8 Editing the Configuration Values by Hand

NOTE : We don’t recommend this and you shouldn’t ever do this, you should do everything with the commands
in the Config plugin.

Some people might like editing their registry file directly rather than manipulating all these things through the
bot. For those people, we offer the config reload command, which reloads both registry configuration and
user/channel/ignore database configuration.

Just edit the interesting files and then give the bot the config reload command and it’ll work as expected. Do
note, however, that Supybot flushes its configuration files and database to disk every hour or so, and if this happens
after you’ve edited your configuration files but before you reload your changes, you could lose the changes you made.
To prevent this, set the supybot.flush value to “Off” while editing the files, and no automatic flushing will occur.

If you cannot access the bot on IRC and your bot is running on a POSIX system, you can also send it a SIGHUP
signal ; it is exactly the same as config reload (note that the Config plugin has to be loaded to do that).

1.5 Identifying the bot to services

The different methods listed here are in the order how they are usually recommended by network operators.

Please also note that SASL and CertFP are only fully supported on Limnoria. Gribble has imported partial SASL
support (only PLAIN).

1.5. Identifying the bot to services 15



Limnoria Documentation, Version 0.83.4.1+limnoria

1.5.1 Registering to services

You can safely jump over this section if your bot is already registered to services.

First start by checking what is the syntax for registering with /msg nickserv help register. It returns you
something like this (Atheme 7.2.4) :

NickServ: Syntax: REGISTER <password> <email-address>

Assuming that that is the syntax, we can register the bot with :

owner ircquote nickserv register mypassword bot@example.com

Note that the email address must be correct. Next check that /msg nickserv info bot doesn’t say something
about being unverified. If it does, go to the email address and run :

owner ircquote nickserv VERIFY REGISTER nick <code from the email>

Now your bot should be successfully registered and you can move to setting up automatic identifying below. If you
need to identify to services now, /msg nickserv help identify and following the syntax (I am still assuming
that you are on Atheme 7.2.4) owner ircquote nickserv identify username password.

1.5.2 SASL PLAIN

To use SASL EXTERNAL, you must only configure CertFP and it’s attempted automatically. SASL PLAIN is identi-
fying using username and password, SASL EXTERNAL is identifying by using CertFP which is explained later on
this document. It doesn’t need username or password to be configured.

Note that SASL isn’t supported on all networks. As the only way to check if SASL is supported is either /quote
CAP LS (which usually gets eaten by bouncers) or connecting to the network and seeing if it works, we recommend
always configuring SASL and whoising the bot to see if it worked. If it didn’t work, you might want to ask the network
operators about their SASL support and request them to start supporting it.

SASL is widely agreed as the best method to identify to services as it identifies you before anyone (other than IRC
operators) can see that you are connected. To enable SASL, simply :

config networks.<network>.sasl.username AccountName
config networks.<network>.sasl.password P455w0rd

where you of course replace AccountName and P455w0rd with your actual NickServ account name and password.
Remember to replace <network> with the real network name like freenode.

1.5.3 CertFP

You can test if CertFP is supported by services simply by doing /msg NickServ cert. If you get an error about
« Insufficient parameters for CERT », CertFP is supported, and if you get an error about unknown command, it’s not
supported.

CertFP identifies you to services using a client (SSL) certificate and naturally requires an SSL connection. It doesn’t
identify you as soon as SASL, but unlike SASL, it identifies you even when services return from a netsplit, unlike any
other mechanism.

First you must generate a certificate, and the easiest method is probably using OpenSSL which you should have even
on Windows if you installed with pip :

16 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

openssl req -nodes -newkey rsa:4096 -keyout <BOT>.pem -x509 -days 3650 -out <BOT>.pem
→˓-subj "/CN=<BOT>"

Now you should have a <BOT>.pem file in the directory where you ran the command, presumably your home direc-
tory and you only tell your bot where to find it and tell NickServ that it belongs to you. Note that you should replace
<BOT> with the account name of your bot.

You have two choices, using the same certificate on all networks :

config protocols.irc.certfile /home/<username>/<BOT>.pem

or only on one or more network where it’s manually configured :

config networks.<network>.certfile /home/<username>/<BOT>.pem

And lastly, you must tell the services what is your certificate fingerprint, which you can find out with :

openssl x509 -sha1 -noout -fingerprint -in <BOT>.pem | tr -d ':' | tr 'A-Z' 'a-z'

This results in something like 05dd01fedc1b821b796d0d785160f03e32f53fa8 which you tell your bot to
tell services :

owner ircquote NickServ cert add 05dd01fedc1b821b796d0d785160f03e32f53fa8

Or if your bot identifies as you, you can do that by yourself with :

/msg NickServ cert add 05dd01fedc1b821b796d0d785160f03e32f53fa8

Remember to replace 05dd01fedc1b821b796d0d785160f03e32f53fa8 with your own fingerprint ! Next
time your bot connects, it should get identified automatically.

1.5.4 SASL ECDSA-NIST256P-CHALLENGE

First you must ECDSA key for the bot to use :

openssl ecparam -name prime256v1 -genkey -out <bot>_ecdsa.pem

and get the public key using :

openssl ec -noout -text -conv_form compressed -in <bot>_ecdsa.pem | grep '^pub:' -A 3
→˓| tail -n 3 | tr -d ' \n:' | xxd -r -p | base64

After getting the public key, you must tell your bot to use it and tell services about it (just like with CertFP/SASL
EXTERNAL) :

config supybot.networks.<network>.sasl.username AccountName
config supybot.networks.<network>.sasl.ecdsa_key /home/<username>/<BOT>_ecdsa.pem
ircquote nickserv set pubkey PUBKEY_WHICH_YOU_GOT_EARLIER

and after reconnecting, the bot should successfully identify using SASL ECDSA-NIST256P-CHALLENGE.

NOTE : You can use ecdsa pubkey to get the public key, but you cannot generate the key pair using it as pyecdsa
doesn’t support ecdsatool generated keys.

1.5. Identifying the bot to services 17



Limnoria Documentation, Version 0.83.4.1+limnoria

1.5.5 Server password

Many networks support identifying using username:password as server password. If this is the case with your
network (anything that uses a charybdis-like IRCd), this should work for you. Note that this identifies you after SASL
so, your real host might be seen. To do this, simply :

config networks.<network>.password username:password

Replace <network> with the name of network, for example freenode and username :password with your real
username and password.

ZNC

If you wish to connect your bot to ZNC, the recommended way is :

config networks.<network>.ident <username>@<identifier>/<network>
config networks.<network>.password <password>

The identifier is free text to describe which client your Limnoria is. It came with ZNC 1.6.0 and is completely optional.
<network> again has been there since ZNC 1.0 which is very old and has multiple security issues that have been
fixed since then. You should always run the latest release.

1.5.6 Services plugin

The Services plugin comes with Supybot and should be an easy way to identify your bot, but SASL and
username:password as server password are recommended over it. Start by loading Services with :

load Services

and then tell it what NickServ and ChanServ are called :

config plugins.services.nickserv NickServ
config plugins.services.chanserv ChanServ

Remember to replace NickServ/ChanServ with their real names if they have a different name on any network. Note
that they must have the same name on all networks, and you must have the same password on all networks.

Now you can set your password :

services password Bot P455w0rd

makes the bot attempt identifying as Bot using password P455w0rd. Replace them with your real nickname and
password. Note that if you have multiple nicknames, you must run services password for them all.

If your bot happens to get a nickname that isn’t configured, it won’t know how to identify. You might be able to avoid
this issue by loading NickCapture, (load NickCapture) which attempts to regain the primary nick, when it’s
possible, and when it regains the primary nick, the identification should work.

18 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

1.6 Capacités

1.6.1 Introduction

Ok, il est temps d’expliquer le fonctionnement du système de capacités. Pour la plupart des bots IRC (y compris
certains que j’ai moi-même écrits avant celui), « ce qu’un-e utilisateur-trice peut faire » peut être défini de deux
façons différentes. Pour les bots très simples, chacun-e a un « niveau » et les commandes vérifies si le niveau d’un-
e utilisateur-trice est assez élevé pour effectuer telle ou telle opération. Pour les bots légèrement plus évolués, les
utilisateurs-trices ont une liste de « flags » (drapeaux, étiquettes) dont la signifie est intégrée au bot, qui vérifie que la
personne qui veut effectuer une opération les a. Les deux méthodes sont, à mon avis, assez arbitraires, et forcent les
utilisateurs-trices et développeurs-euses à être inutilement forcé-es à utiliser des constructions peu expressives.

Ce bot est différent. Chaque utilisateur-trice a un ensemble de « capacités », qui est consulté à chaque fois qu’iel
envoie une commande au bot. Les commandes, plutôt que de vérifier qu’iel a un niveau de 100, ou vérifier qu’iel a le
flag « o », sont capables de vérifier qu’iel a la capacité « owner ». Pour le moment, une telle différence ne semble pas
révolutionnaire, mais on peut déjà constater que cette méthode est plus explicite, et plus facile pour les personnes qui
s’en servent et développent pour comprendre ce qu’il se passe vraiment.

1.6.2 Capacité utilisateur-trice

Que permettent donc les capacités de faire ?

Si c’était tout, eh bien, le système de capacités serait cool, mais peu de gens diraient génial. Mais il est génial !
Plusieurs choses arrivent derrière le décors pour que ça soit génial, et ce sont des choses qui n’arrivent pas avec les
bots qui utilisent des niveaux numériques ou des flags d’un seul caractère. Premièrement, quand quelqu’un envoie
une commande au bot, le dispatcher de commande vérifie qu’iel n’a pas l’« anticapacité » pour cete commande. Une
anticapacité est une capacité qui, plutôt que de dire ce que quelqu’un peut faire, dit ce que cette personne ne peut pas
faire. Elle est formée simplement en ajoutant un tirer (« - ») au début du nom de la capacité : « rot13 » est une capacité,
« -rot13 » est une anticapacité.

Bref, quand quelqu’un envoie une commande au bot, par exemple « calc » ou « help », le bot vérifie d’apport qu’iel
n’a pas les anticapacités « -calc » ou « -help » avant même de songer à lui réponse. Donc les commandes peuvent être
activées ou désactivées pour chaque personne, permettant un contrôle fin, qui n’est pas souvent (voire jamais) possible
avec d’autres bots. Cela peut être raffiné encore plus en limitant les (anti)capacités à une commande d’un plugin en
particulier, ou à tout un plugin. Par exemple, la commande rot13 est dans le plugin Filter. Si quelqu’un devrait pouvoir
utilisr la commande rot13 d’un autre plugin, mais pas celle du plugin Format, iel aurait seulement besoin de recevoir
l’anticapacité « -Format.rot13 ». Similairement, si quelqu’un doit se faire bannir du plugin Filter, il suffit de lui donner
l’anticapacité « -Filter ».

1.6.3 Channel Capabilities

What if #linux wants completely different capabilities from #windows ?

But that’s not all ! The capabilities system also supports channel capabilities, which are capabilities that only apply
to a specific channel ; they’re of the form “#channel,capability”. Whenever a user issues a command to the bot in a
channel, the command dispatcher also checks to make sure the user doesn’t have the anticapability for that command
in that channel, and if the user does, the bot won’t respond to the user in the channel. Thus now, in addition to having
the ability to turn individual commands on or off for an individual user, we can now turn commands on or off for an
individual user on an individual channel !

So when a user “foo” sends a command “bar” to the bot on channel “#baz”, first the bot checks to see if the user has
the anticapability for the command by itself, “-bar”. If so, it errors right then and there, telling the user that he lacks the
“bar” capability. If the user doesn’t have that anticapability, then the bot checks to see if the user issued the command
over a channel, and if so, checks to see if the user has the antichannelcapability for that command, “#baz,-bar”. If so,

1.6. Capacités 19



Limnoria Documentation, Version 0.83.4.1+limnoria

again, it tells the user that they lack the “bar” capability. If neither of these anticapabilities are present, then the bot
just responds to the user like normal.

1.6.4 Default Capabilities

So what capabilities am I dealing with already ?

There are several default capabilities the bot uses. The most important of these is the “owner” capability. This capability
allows the person having it to use any command. It’s best to keep this capability reserved to people who actually have
access to the shell the bot is running on. It’s so important, in fact, that the bot will not allow you to add it with a
command–you’ll have you edit the users file directly to give it to someone.

There is also the “admin” capability for non-owners that are highly trusted to administer the bot appropriately. They
can do things such as change the bot’s nick, cause the bot to ignore a given user, make the bot join or part channels,
etc. They generally cannot do administration related to channels, which is reserved for people with the next capability.

People who are to administer channels with the bot should have the “#channel,op” capability–whatever channel they
are to administrate, they should have that channel capability for “op”. For example, since I want inkedmn to be an
administrator in #supybot, I’ll give them the “#supybot,op” capability. This is in addition to their “admin” capability,
since the “admin” capability doesn’t give the person having it control over channels. “#channel,op” is used for such
things as giving/receiving ops, kickbanning people, lobotomizing the bot, ignoring users in the channel, and managing
the channel capabilities. The “#channel,op” capability is also basically the equivalent of the “owner” capability for
capabilities involving #channel–basically anyone with the #channel,op capability is considered to have all positive
capabilities and no negative capabilities for #channel.

One other globally important capability exists : “trusted”. This is a command that basically says « This user can be
trusted not to try and crash the bot. » It allows users to call commands like “icalc” in the “Math” plugin, which can
cause the bot to begin a calculation that could potentially never return (a calculation like “10**10**10**10”). Another
command that requires the “trusted” capability is the “re” command in the “Utilities” plugin, which (due to the regular
expression implementation in Python (and any other language that uses NFA regular expressions, like Perl or Ruby or
Lua or . . . ) which can allow a regular expression to take exponential time to process). Consider what would happen
if someone gave the bot the command “re [format join « » s/./ [dict go] /] [dict go]” It would basically replace every
character in the output of “dict go” (14,896 characters !) with the entire output of “dict go”, resulting in 221MB of
memory allocated ! And that’s not even the worst example !

1.6.5 Managing capabilities

Capacité utilisateur-trice

User capabilities are controlled with the admin capability <add|remove> and channel capability
<add|remove>. Their difference is that the first one is only restricted to those who have the admin capability.

To make user1 admin, I would run :

admin capability add user1 admin

If the bot joins on a channel where there should be ops who should’t have power over any other channel, I would run :

channel capability add #channel user2 op

Note that admins cannot give anyone capability which they don’t have by themselves first, so user1 couldn’t use
channel capability add unless they were made #channel,op first. The command :

admin capability add user2 #channel,op

20 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

has the same effect as channel capability add, but it requires user to have the admin capability in addition to
#channel,op.

If there is abusive user who shouldn’t have op capability but still does for one reason or another, I could run either :

channel capability add user3 -op

or :

channel capability remove user3 op

Anticapabilities are checked before normal capabilities so the first command would work even if user3 still had the op
capability. Removing capability which isn’t given to user or channel adds anti-capability automatically.

User capabilities can be viewed with user capabilities command.

Channel

Channel capabilities affect everyone on the current channel including unidentified users. They are controlled with the
channel capability <set|unset> commands.

If I wanted to make everyone on the channel able to voice themselves or get automatically voiced by the AutoMode
plugin, I would start by unsetting the default anticapability and setting the capability. :

channel capability unset -voice
channel capability set voice

Now anyone on the channel can voice themselves or if AutoMode plugin is configured to voice voiced people, the will
automatically get voiced on join.

If there was unwanted plugin or plugin which output was causing spam, Games for example, I could add anticapability
for it and prevent the whole plugin from being used. :

channel capability set -Games

Note that I didn’t specify any separate command after Games.

Default

Default capabilities affect everyone whether they are identified or not. They are controlled by the owner
defaultcapability <add|remove> command and they arecommonly used for preventing users from ad-
ding/removing akas, using Unix Progstats which disabling is asked about in supybot-wizard or registering to the bot
using anticapabilities. :

defaultcapability add -aka.add
defaultcapability add -aka.remove
defaultcapability add -user.register
defaultcapability add -unix.progstats

To undo this I would simply do the opposite. :

defaultcapability remove -aka.add
defaultcapability remove -aka.remove
defaultcapability remove -user.register
defaultcapability remove -unix.progstats

Defaultcapabilities can be restored with two commands from the First is only in Limnoria at the time of writing :

1.6. Capacités 21



Limnoria Documentation, Version 0.83.4.1+limnoria

config setdefault capabilities
config capabilities [config default capabilities]

1.6.6 Final Word

From a programmer’s perspective, capabilties are flexible and easy to use. Any command can check if a user has any
capability, even ones not thought of when the bot was originally written. Plugins can easily add their own capabili-
ties–it’s as easy as just checking for a capability and documenting somewhere that a user needs that capability to do
something.

From an user’s perspective, capabilities remove a lot of the mystery and esotery of bot control, in addition to giving
a bot owner absolutely finegrained control over what users are allowed to do with the bot. Additionally, defaults can
be set by the bot owner for both individual channels and for the bot as a whole, letting an end-user set the policy they
want the bot to follow for users that haven’t yet registered in their user database. It’s really a revolution !

1.7 Security in Limnoria

Some security features are disabled by default. We know this is arguable, but enabling them would make it quite hard
to start using the bot. This guide is for people who want to enable these features to make their bot as secure as possible.

Note : Limnoria (or Gribble or Supybot) have never been audited by a security professional. We do the best we can
to make it secure, but we cannot guarantee it is completely safe.

1.7.1 Trust in network operators

As you may know, by default, it is possible to do anything from IRC, including loading the Unix plugin and using
the @call command. The only safeguard is checking the user calling the commands is authenticated as the owner of
the bot ; and network operators are able to spoof hostmasks and collect your password, thus allowing them to execute
commands as the owner.

Although network operators of most well-known IRC networks are not known to do that, you should be aware of that
risk.

Starting on commit 4f6a5e7db (version 2017.10.01), there is a new configuration variable, supy-
bot.commands.allowShell, to prevent malicious network operators from getting shell access on your bot’s computer. It
defaults to True to make it easy for new users to install plugins using PluginDownloader, but it is recommended you
set it to False if you do not care about that feature.

1.7.2 Network connections / SSL

Background on SSL certification validation

It is often believed using SSL magically makes impossible any attack on your connection (from the bot to the server).
It is true that it prevents passive eavesdropping, but other attack methods are still possible.

The main one involves man-in-the-middle, ie. someone acting as a proxy between you (your bot, in that case) and
the IRC network. If certificates are not validated, the attacker can allow you to connect to itself using their own SSL
certificate, and you would never know about it.

22 Chapitre 1. The Supybot user guide

https://github.com/ProgVal/Limnoria/commit/4f6a5e7db


Limnoria Documentation, Version 0.83.4.1+limnoria

This is why it is important to check the SSL certificate of the server you connect to : an attacker cannot spoof a
certificate, or the trust of a Certificate Authority in a network’s certificates.

Of course, this assumes there is no bug in your SSL library, the network’s, and the protocols involved.

Certificate validation in Limnoria

Until version 2016.02.24, Limnoria did not support certificate validation. Starting from this version, it is possible, but
disabled by default, in order to not break existing bots when updating.

Certificate validation can be enabled using this command :

@config supybot.protocols.ssl.verifyCertificates true

Available validation mechanisms are Certification Authorities and fingerprint checking.

Certificate Authorities

By default, Limnoria only checks certificates using CA certificates installed on your system. However, some networks
use a CA that is not trusted by your system, such as CACert.

Limnoria allows you to add a CA certificate for a network :

@config networks.NETWORKNAME.ssl.authorityCertificate /path/to/the/certificate.crt

Note that you are responsible for making sure this is the right certificate for the CA, and trust this CA to sign correctly
certificates valid for the network’s hostname(s).

Fingerprint checking

Alternatively, for networks that do not use a CA, you can give Limnoria the list of fingerprints of certificates used by
the network :

@config supybot.networks.NETWORKNAME.ssl.serverFingerprints: <fingerprint1>
→˓<fingerprint2> ...

Adding fingerprints will disable CA verifications (useful if you do not want to trust CAs).

Note that you are responsible for giving the correct list of fingerprints.

Supported python versions

Fingerprint checking is available in all Python versions.

CA validation is available in Python 2, starting on 2.7.9 ; and Python 3, starting on 3.4.

1.8 Frequently Asked Questions

1.8.1 How do I make my Supybot connect to multiple servers ?

Just use the connect command in the Network plugin.

1.8. Frequently Asked Questions 23



Limnoria Documentation, Version 0.83.4.1+limnoria

1.8.2 Why does my bot not recognize me or tell me that I don’t have the “owner”
capability ?

Because you’ve not given it anything to recognize you from !
You’ll need to identify to the bot (help identify to see how that works) or add your hostmask to
your user record (help hostmask add to see how that works) for it to know that you’re you.
You may wish to note that hostmask add can accept a password ; rather than identify, you can send
the command :

hostmask add myOwnerUser [hostmask] myOwnerUserPassword

and the bot will add your current hostmask to your owner user (of course, you should change myOwne-
rUser and myOwnerUserPassword appropriately for your bot).
For additional ways to identify to your bot, you may want to see Getting Started with Supybot.

1.8.3 What is a hostmask ?

Each user on IRC is uniquely identified by a string which we call a hostmask. The IRC RFC refers to it
as a prefix. Either way, it consists of a nick, a user, and a host, in the form nick!user@host. If your
Supybot complains that something you’ve given to it isn’t a hostmask, make sure that you have those three
components and that they’re joined in the appropriate manner.

1.8.4 My bot can’t handle nicks with brackets in them !

It always complains about something not being a valid command, or about spurious or missing right
brackets, etc.
You should quote arguments (using double quotes, like this : "foo[bar]") that have brackets in them
that you don’t wish to be evaluated as nested commands. Alternatively, you can turn off nested commands
by setting supybot.commands.nested to False, or change the brackets that nest commands by setting supy-
bot.commands.nested.brackets to some other value (like <>, which can’t occur in IRC nicks).

1.8.5 I loaded Alias before, how do I move to Aka ?

First load both of the plugins, Aka and Alias. Then run aka importaliasdatabase and unload Alias. Now
all your aliases should be imported to the Aka plugin.

1.8.6 I added an aka, but it doesn’t work !

Take a look at aka show <aka you added>. If the aka the bot has listed doesn’t match what you’re
giving it, chances are you need to quote your aka in order for the brackets not to be evaluated. For instance,
if you’re adding an aka to give you a link to your homepage, you need to say :

aka add mylink "format concat http://my.host.com/ [urlquote $1]"

and not :

aka add mylink format concat http://my.host.com/ [urlquote $1]

The first version works ; the second version will always return the same url.

24 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

1.8.7 What does “lobotomized” mean ?

I see this word in commands and in my channels.conf, but I don’t know what it means. What does Supybot
mean when it says lobotomized ?
A lobotomy is an operation that removes the frontal lobe of the brain, the part that does most of a person’s
thinking. To lobotomize a bot is to tell it to stop thinking–thus, a lobotomized bot will not respond to
anything said by anyone other than its owner in whichever channels it is lobotomized.
The term is certainly suboptimal, but remains in use because it was historically used by certain other IRC
bots, and we wanted to ease the transition to Supybot from those bots by reusing as much terminology as
possible.

1.8.8 Is there a way to load all the plugins Supybot has ?

No, there isn’t. Even if there were, some plugins conflict with other plugins, so it wouldn’t make much
sense to load them. For instance, what would a bot do with Factoids, MoobotFactoids, and Infobot all
loaded ? Probably just annoy people :)
You can also install user-contributed plugins using the PluginDownloader plugin (load
PluginDownloader). The repolist command can list repositories and their contents, and
the install command installs plugins.

1.8.9 Is there a command that can tell me what capability another command re-
quires ?

No, there isn’t, and there probably never will be.
Commands have the flexibility to check any capabilities they wish to check ; while this flexibility is useful,
it also makes it hard to guess what capability a certain command requires. We could make a solution that
would work in a large majority of cases, but it wouldn’t (and couldn’t !) be absolutely correct in all
circumstances, and since we’re anal and we hate doing things halfway, we probably won’t ever add this
partial solution.

1.8.10 Why doesn’t Karma seem to work for me ?

Karma, by default, doesn’t acknowledge karma updates. If you check the karma of whatever you increa-
sed/decreased, you’ll note that your increment or decrement still took place. If you’d rather Karma ack-
nowledge karma updates, change the supybot.plugins.Karma.response configuration variable to « True ».

1.8.11 Why won’t Supybot respond to private messages ?

The most likely cause is that your bot has a mode blocking messages from unregistered users. Around
Sept. 2005, for example, Freenode added a user mode where registered users could set +R, which blocks
private messages from unregistered users. So, the reason you aren’t seeing a response from your Supybot
is likely :
— Your Supybot is not registered with NickServ, you are registered, and you have set the +R user mode

for yourself.
— or : you have registered your Supybot with NickServ, you aren’t registered, and your Supybot has the

+R user mode set.

1.8. Frequently Asked Questions 25

http://freenode.net/faq.shtml#blockingmessages


Limnoria Documentation, Version 0.83.4.1+limnoria

1.8.12 Can users with the admin capability change the configuration ?

Currently, no. Feel free to make your case to us as to why a certain configuration variable should only
require the admin capability instead of the owner capability, and if we agree with you, we’ll change it for
the next release.

1.8.13 How can I make my Supybot log my IRC channel ?

To log all the channels your Supybot is in, simply load the ChannelLogger plugin, which is included in
the main distribution.

1.8.14 How do I get channel modes when writing a plugin ?

I want to know who’s an op in a certain channel, or who’s voiced, or what the modes on the channel are.
How do I do that ?
Everything you need is kept in a ChannelState object in an IrcState object in the Irc object your plugin is
given. To see the ops in a given channel, for instance, you would do this :

irc.state.channels['#channel'].ops

To see a dictionary mapping mode chars to values (if any), you would do this :

irc.state.channels['#channel'].modes

From there, things should be self-evident.

1.8.15 Can Supybot connect through a proxy server ?

Limnoria can connect to specific network using socks proxy, simply set the configuration variable su-
pybot.networks.<network>.socksproxy. For specifying proxy which is used for HTTP requests, set the
configuration variable supybot.protocols.http.proxy.
Supybot also works with transparent proxy server helpers like tsocks that are designed to proxy-enable all
network applications, and Supybot does work with these.

1.8.16 Why can’t Supybot find the plugin I want to load ?

Why does my bot say that “No plugin « foo » exists.” when I try to load the foo plugin ?
First, make sure you are typing the plugin name correctly. @load foo may not be the same as @load
Foo depending on your Supybot version 1. If that is not the problem,

1.8.17 I’ve found a bug, what do I do ?

Submit your bug at our issue tracker.

Yes, it used to be the same, but then we moved to using directories for plugins instead of a single file. Apparently, that makes a difference to Python.

26 Chapitre 1. The Supybot user guide

http://tsocks.sourceforge.net
https://github.com/ProgVal/Limnoria/issues


Limnoria Documentation, Version 0.83.4.1+limnoria

1.8.18 Is Python installed ?

I run Windows, and I’m not sure if Python is installed on my computer. How can I find out for sure ?
Python isn’t commonly installed by default on Windows computers. If you don’t see it in your start menu
somewhere, it’s probably not installed.
The easiest way to find out if Python is installed is simply to download it and try to install it. If the installer
complains, you probably already have it installed. If it doesn’t, well, now you have Python installed.

1.8.19 Can I make Supybot silent, but still working on channel (as titlesnarfer or
something) ?

With lobotomy, the bot stops doing everything on the channel. If you want it to not reply to commands, but still work
as titlesnarfer or similar, you can configure it to not respond to anything.

Globally :

config supybot.reply.whenAddressedBy.chars ""
config supybot.reply.whenAddressedBy.nicks ""
config supybot.reply.whenAddressedBy.strings ""
config supybot.reply.whenAddressedBy.nick False
config supybot.reply.whenAddressedBy.nick.atEnd False

Or just for one channel :

config channel #channel supybot.reply.whenAddressedBy.chars ""
config channel #channel supybot.reply.whenAddressedBy.nicks ""
config channel #channel supybot.reply.whenAddressedBy.strings ""
config channel #channel supybot.reply.whenAddressedBy.nick False
config channel #channel supybot.reply.whenAddressedBy.nick.atEnd False

1.8.20 How to make a connection secure ?

First, you should make the bot use SSL for each network :

config supybot.networks.<NETWORK>.ssl on

Then, you must update the server port for the network the bot connects to (this is usually 6697, but some networks use
a different one) :

config supybot.networks.<NETWORK>.servers irc.network.com/6697

In the previous command, you must of course replace irc.network.com with the hostname of a server of the network.
You could either check out the network’s website, or get the current one, with this command :

config supybot.networks.<NETWORK>.servers

1.8.21 How to make Limnoria use Python 3 instead of Python 2 ?

First, uninstall Limnoria :

sudo python -m pip uninstall limnoria

Or, if you did not install Limnoria as root :

1.8. Frequently Asked Questions 27

http://python.org/download/


Limnoria Documentation, Version 0.83.4.1+limnoria

python -m pip uninstall limnoria

Then, follow the install guide. In short, just run this :

sudo python3 -m pip install limnoria --upgrade

1.9 Using the HTTP server

1.9.1 Configuration

The HTTP server comes with a couple of additional variables :
— supybot.servers.http.favicon : Path to the file which is shown to browsers as favicon.
— supybot.servers.http.hosts4 : The IPv4 addresses where the bot will bind. In most of the cases, you will use

0.0.0.0 (everything) or 127.0.0.1 (restricted to local connections). Defaults to 0.0.0.0
— supybot.servers.http.hosts6 : The IPv6 addresses where the bot will bind. Defaults to empty.
— supybot.servers.http.keepAlive : Determines whether the HTTP server will run even if has nothing to serve.

Defaults to False, because the daemon might require changing the port, if it is already taken.
— supybot.servers.http.port : The port the bot will bind. May not work if the number is below 1024. Defaults to

8080 (alternative HTTP port).

1.9.2 Using the server

At the root of the server, you will find a list of the plugins that have a Web interface, and a link to them. Each plugin
has one or more subdirectories of its own.

You may also want to run Apache httpd or Nginx in front of Supybot’s HTTP server, if you want to use subdomains
or load balancing.

Here is an example of Apache httpd configuration (I didn’t test it with the rewrite, please notify me whether it works
or not) :

<VirtualHost 0.0.0.0:80>
ServerName stats.yourdomain.org
<Location />

ProxyPass http://localhost:8080/webstats/
SetEnv force-proxy-request-1.0 1
SetEnv proxy-nokeepalive 1

</Location>
</VirtualHost>

Here is an example of the Nginx configuration. Create a new site /etc/nginx/sites-enabled/bot :

server {
# Note that your default server should specify these ports
listen 80;
listen [::]:80;
# If your default server also has HTTPS configured, uncomment
# the following two listen lines to enable it for this vhost.
#listen 443;
#listen [::]:443;
server_name stats.yourdomain.org;

location / {

(suite sur la page suivante)

28 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

proxy_pass http://localhost:8080/;
}

}

Note that any HTTP server which can provide a reverse proxy service can be configured to act as an intermediary or
front end for the Limnoria HTTP server. Configuring these alternatives is left as an exercise to the system administrator
(who ought to be familiar enough with it already).

1.9.3 Templates

Among the plugins which use the HTTP server, some use the standard templates system which allows you to edit page
templates in a standard way (for other plugins, check their documentation).

Templates are located in the data/web/ folder. There is a folder per plugin (and a generic folder, which holds generic
pages), and all file names end with .example, which is the default template provided by the plugin. To customize
it, rename it to remove .example (for instance : mv fooplugin/foopage.html.example fooplugin/
foopage.html) and edit it (either do it intuitively or check the plugin documentation to see how it handles its
templates).

1.10 Restarting the bot automatically

This page documents the different ways to automatically restart your bot in case of crash or system reboot or anything
that can make the bot quit.

Note that you only need to use one.

1.10.1 supybot-botchk

supybot-botchk is a script that comes with Supybot which restarts the bot if it quits or system reboots or anything that
causes the bot to quit. It’s placed to crontab so cron will run it with scheduled intervals.

How to use it ?

Configuring the bot

Start by telling your bot to write a pidfile somewhere where it can write, and restart the bot. For example :

config supybot.pidfile /home/<username>/<bot>/<bot>.pid

where <username> is replaced with the system username and <bot> is replaced with the name of the bot.

crontab

After the pidfile is configured, you can modify crontab. First you should copy the output of :

printf 'PATH=%s\n' "$PATH"

1.10. Restarting the bot automatically 29



Limnoria Documentation, Version 0.83.4.1+limnoria

and open crontab with EDITOR=nano crontab -e and paste the output of previous command to the first lines
which don’t have comments. This should be on top. You will probably also want to configure locale and timezone
which happens by adding the following lines :

# Replace en_US.utf8 with your own locale! You should see list of
# available locales with `locale` command, just use something which
# ends with "utf8" or "UTF-8" (the latter is required on some operating
# systems like OS X).
LC_ALL=en_US.UTF-8

# Specifying timezone is optional, but you probably want to do it if
# your system is on different timezone. Replace ``UTC`` with
# ``Area/Region`` as it appears in IANA Time Zone Database if you don't
# want to use UTC.
TZ=UTC

NOTE : Lines starting with # are comments and don’t need to be written.

Now you finally add the bot. If you have multiple bots, simply add separate lines for them all :

*/5 * * * * supybot-botchk --botdir=/home/<username>/<bot>/ --pidfile=/home/<username>
→˓/<bot>/<bot>.pid --conffile=/home/<username>/<bot>/<bot>.conf

If you needed to use diferent environment for other bot, you could specify that on the same line. For example, my
other bot uses en_US.utf8 as locale and UTC as timezone :

*/5 * * * * LC_ALL=en_US.UTF-8 TZ=UTC supybot-botchk --botdir=/home/<username>/<bot2>/
→˓ --pidfile=/home/<username>/<bot2>/<bot2>.pid --conffile=/home/<username>/<bot2>/
→˓<bot2>.conf

Note that environment doesn’t need to be specified on supybot-botchk line unless it differs from globally specified
environment which we added as the first thing to crontab.

Now you can save the crontab by pressing CTRL + O answering y and then quitting nano with CTRL + X.

If you are wondering what */5 * * * * means, it simply means « run this every five minutes every day ». The 5
can be replaced with any other number and there are also @hourly etc. which can be used on it’s place, but you most
likely won’t want to wait hour or more if your bot crashes.

1.10.2 systemd service

You need root access as no one has got this to work as user service yet. You must also use systemd as your init.

Create a new file /etc/systemd/system/<BOTNAME>.service with the following content replacing things
were suitable :

[Unit]
Description=Supybot
After=network.target

[Service]
Environment="PATH=/usr/local/bin:/usr/local/sbin:/usr/local/games:/usr/bin:/usr/sbin:/
→˓usr/games:/bin:/sbin:/bin:/opt/local/bin:/opt/local/sbin:/opt/local/games TZ=UTC"
Type=simple
ExecStart=/usr/local/bin/supybot /home/bot/botname/botname.conf
ExecReload=/bin/kill -HUP $MAINPID
Restart=always

(suite sur la page suivante)

30 Chapitre 1. The Supybot user guide



Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

User=BOTUSERNAME
SyslogIdentifier=Supybot
# Uncomment these lines for extra security at the cost of breaking some third-party
→˓plugins:
# SystemCallFilter=~@raw-io @clock @cpu-emulation @debug @keyring @module @mount
→˓@obsolete @privileged @raw-io
# ProtectSystem=strict
# ProtectHome=read-only
# ReadWritePaths=/home/bot/botname

[Install]
WantedBy=multi-user.target

Now you should run systemctl daemon-reload to make systemd aware of changed files and systemctl
enable <BOTNAME>.service to make the bot start on boot etc. and systemctl start <BOTNAME>.
service to start the bot.

Remember to check the Ènvironment line. You can get your PATH with printf 'PATH=%s\n' "$PATH".

Some commands

— autostart on boot : systemctl enable <BOTNAME>.service
— disable autostart on boot : systemctl disable <BOTNAME>.service
— start the bot : systemctl start <BOTNAME>.service
— stop the bot : systemctl stop <BOTNAME>.service
— reload config files : systemctl reload <BOTNAME>.service

1.10. Restarting the bot automatically 31



Limnoria Documentation, Version 0.83.4.1+limnoria

32 Chapitre 1. The Supybot user guide



CHAPITRE 2

Developing plugins for Limnoria

2.1 Generic documentation

2.1.1 Writing Your First Supybot Plugin

Introduction

Ok, so you want to write a plugin for Supybot. Good, then this is the place to be. We’re going to start from the top (the
highest level, where Supybot code does the most work for you) and move lower after that.

So have you used Supybot ? If not, you need to go use it. This will help you understand crucial things like the way the
various commands work and it is essential prior to embarking upon the plugin-development excursion detailed in the
following pages. If you haven’t used Supybot, come back to this document after you’ve used it for a while and gotten
a feel for it.

So, now that we know you’ve used Supybot, we’ll start getting into details. We’ll go through this tutorial by actually
writing a new plugin, named Random with just a few simple commands.

Caveat : you’ll need to have Supybot installed on the machine you intend to develop plugins on. This
will not only allow you to test the plugins with a live bot, but it will also provide you with several nice
scripts which aid the development of plugins. Most notably, it provides you with the supybot-plugin-create
script which we will use in the next section. . . Creating a minimal plugin This section describes using the
“supybot-plugin-create” script to create a minimal plugin which we will enhance in later sections.

The recommended way to start writing a plugin is to use the wizard provided, supybot-plugin-create. Run
this from within your local plugins directory, so we will be able to load the plugin and test it out.

It’s very easy to follow, because basically all you have to do is answer three questions. Here’s an example session :

[ddipaolo@quinn ../python/supybot]% supybot-plugin-create
What should the name of the plugin be? Random

Sometimes you'll want a callback to be threaded. If its methods
(command or regexp-based, either one) will take a significant amount
of time to run, you'll want to thread them so they don't block the

(suite sur la page suivante)

33



Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

entire bot.

Does your plugin need to be threaded? [y/n] n

What is your real name, so I can fill in the copyright and license
appropriately? Daniel DiPaolo

Your new plugin template is in the Random directory.

It’s that simple ! Well, that part of making the minimal plugin is that simple. You should now have a directory with a
few files in it, so let’s take a look at each of those files and see what they’re used for.

README.md

Open the file with notepad just as if it was a .txt file. In README.md you put exactly what the boilerplate text says to
put in there :

Insert a description of your plugin here, with any notes, etc. about using it.

A brief overview of exactly what the purpose of the plugin is supposed to do is really all that is needed here. Also,
if this plugin requires any third-party Python modules, you should definitely mention those here. You don’t have to
describe individual commands or anything like that, as those are defined within the plugin code itself as you’ll see
later. You also don’t need to acknowledge any of the developers of the plugin as those too are handled elsewhere.

For our Random plugin, let’s make README.md say this :

This plugin contains commands relating to random numbers, and includes : a simple random number
generator, the ability to pick a random number from within a range, a command for returning a random
sampling from a list of items, and a simple dice roller.

And now you know what’s in store for the rest of this tutorial, we’ll be writing all of that in one Supybot plugin, and
you’ll be surprised at just how simple it is !

__init__.py

The next file we’ll look at is __init__.py. If you’re familiar with the Python import mechanism, you’ll know what
this file is for. If you’re not, think of it as sort of the « glue » file that pulls all the files in this directory together when
you load the plugin. It’s also where there are a few administrative items live that you really need to maintain.

Let’s go through the file. For the first 30 lines or so, you’ll see the copyright notice that we use for our plugins,
only with your name in place (as prompted in supybot-plugin-create). Feel free to use whatever license you
choose, we don’t feel particularly attached to the boilerplate code so it’s yours to license as you see fit even if you
don’t modify it. For our example, we’ll leave it as is.

The plugin docstring immediately follows the copyright notice and it (like README.txt) tells you precisely what it
should contain :

Add a description of the plugin (to be presented to the user inside the wizard) here. This should describe
what the plugin does.

The « wizard » that it speaks of is the supybot-wizard script that is used to create working Supybot config file. I
imagine that in meeting the prerequisite of « using a Supybot » first, most readers will have already encountered this
script. Basically, if the user selects to look at this plugin from the list of plugins to load, it prints out that description
to let the user know what it does, so make sure to be clear on what the purpose of the plugin is. This should be an
abbreviated version of what we put in our README.txt, so let’s put this :

Provides a number of commands for selecting random things.

34 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

Next in __init__.py you see a few imports which are necessary, and then four attributes that you need to modify
for your bot and preferably keep up with as you develop it : __version__, __author__, __contributors__,
__url__.

__version__ is just a version string representing the current working version of the plugin, and can be anything
you want. If you use some sort of RCS, this would be a good place to have it automatically increment the version
string for any time you edit any of the files in this directory. We’ll just make ours « 0.1 ».

__author__ should be an instance of the supybot.Author class. A supybot.Author is simply created by
giving it a full name, a short name (preferably IRC nick), and an e-mail address (all of these are optional, though
at least the second one is expected). So, for example, to create my Author user (though I get to cheat and use supy-
bot.authors.strike since I’m a main dev, muahaha), I would do :

__author__ = supybot.Author('Daniel DiPaolo', 'Strike',
'somewhere@someplace.xxx')

Keep this in mind as we get to the next item. . .

__contributors__ is a dictionary mapping supybot.Author instances to lists of things they contributed. If so-
meone adds a command named foo to your plugin, the list for that author should be ["foo"], or perhaps even
["added foo command"]. The main author shouldn’t be referenced here, as it is assumed that everything that
wasn’t contributed by someone else was done by the main author. For now we have no contributors, so we’ll leave it
blank.

Lastly, the __url__ attribute should just reference the download URL for the plugin. Since this is just an example,
we’ll leave this blank.

The rest of __init__.py really shouldn’t be touched unless you are using third-party modules in your plugin. If
you are, then you need to take special note of the section that looks like this :

import config
import plugin
reload(plugin) # In case we're being reloaded.
# Add more reloads here if you add third-party modules and want them
# to be reloaded when this plugin is reloaded. Don't forget to
# import them as well!

As the comment says, this is one place where you need to make sure you import the third-party modules, and that you
call reload() on them as well. That way, if we are reloading a plugin on a running bot it will actually reload the
latest code. We aren’t using any third-party modules, so we can just leave this bit alone.

We’re almost through the « boring » part and into the guts of writing Supybot plugins, let’s take a look at the next file.

config.py

config.py is, unsurprisingly, where all the configuration stuff related to your plugin goes. If you’re not familiar with
Supybot’s configuration system, I recommend reading the config tutorial before going any further with this section.

So, let’s plow through config.py line-by-line like we did the other files.

Once again, at the top is the standard copyright notice. Again, change it to how you see fit.

Then, some standard imports which are necessary.

Now, the first peculiar thing we get to is the configure function. This function is what is called by the supybot-wizard
whenever a plugin is selected to be loaded. Since you’ve used the bot by now (as stated on the first page of this tutorial
as a prerequisite), you’ve seen what this script does to configure plugins. The wizard allows the bot owner to choose
something different from the default plugin config values without having to do it through the bot (which is still not
difficult, but not as easy as this). Also, note that the advanced argument allows you to differentiate whether or not the

2.1. Generic documentation 35



Limnoria Documentation, Version 0.83.4.1+limnoria

person configuring this plugin considers himself an advanced Supybot user. Our plugin has no advanced features, so
we won’t be using it.

So, what exactly do we do in this configure function for our plugin ? Well, for the most part we ask questions and we set
configuration values. You’ll notice the import line with supybot.questions in it. That provides some nice convenience
functions which are used to (you guessed it) ask questions. The other line in there is the conf.registerPlugin line which
registers our plugin with the config and allows us to create configuration values for the plugin. You should leave these
two lines in even if you don’t have anything else to put in here. For the vast majority of plugins, you can leave this part
as is, so we won’t go over how to write plugin configuration functions here (that will be handled in a separate article).
Our plugin won’t be using much configuration, so we’ll leave this as is.

Next, you’ll see a line that looks very similar to the one in the configure function. This line is used not only to register
the plugin prior to being called in configure, but also to store a bit of an alias to the plugin’s config group to make
things shorter later on. So, this line should read :

Random = conf.registerPlugin('Random')

Now we get to the part where we define all the configuration groups and variables that our plugin is to have. Again,
many plugins won’t require any configuration so we won’t go over it here, but in a separate article dedicated to sprucing
up your config.py for more advanced plugins. Our plugin doesn’t require any config variables, so we actually don’t
need to make any changes to this file at all.

Configuration of plugins is handled in depth at the Advanced Plugin Config Tutorial

plugin.py

Here’s the moment you’ve been waiting for, the overview of plugin.py and how to make our plugin actually do stuff.

At the top, same as always, is the standard copyright block to be used and abused at your leisure.

Next, some standard imports. Not all of them are used at the moment, but you probably will use many (if not most)
of them, so just let them be. Since we’ll be making use of Python’s standard “random” module, you’ll need to add the
following line to the list of imports :

import random

Now, the plugin class itself. What you’re given is a skeleton : a simple subclass of callbacks.Plugin for you to start
with. The only real content it has is the boilerplate docstring, which you should modify to reflect what the boilerplate
text says - it should be useful so that when someone uses the plugin help command to determine how to use this plugin,
they’ll know what they need to do. Ours will read something like :

"""This plugin provides a few random number commands and some
commands for getting random samples. Use the "seed" command to seed
the plugin's random number generator if you like, though it is
unnecessary as it gets seeded upon loading of the plugin. The
"random" command is most likely what you're looking for, though
there are a number of other useful commands in this plugin. Use
'list random' to check them out. """

It’s basically a « guide to getting started » for the plugin. Now, to make the plugin do something. First of all, to get
any random numbers we’re going to need a random number generator (RNG). Pretty much everything in our plugin
is going to use it, so we’ll define it in the constructor of our plugin, __init__. Here we’ll also seed it with the current
time (standard practice for RNGs). Here’s what our __init__ looks like :

def __init__(self, irc):
self.__parent = super(Random, self)
self.__parent.__init__(irc)

(suite sur la page suivante)

36 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

self.rng = random.Random() # create our rng
self.rng.seed() # automatically seeds with current time

Make sure you add it with one indentation level more than the class line (ie. with four spaces before the def ).

Now, the first two lines may look a little daunting, but it’s just administrative stuff required if you want to use a custom
__init__. If we didn’t want to do so, we wouldn’t have to, but it’s not uncommon so I decided to use an example plugin
that did. For the most part you can just copy/paste those lines into any plugin you override the __init__ for and just
change them to use the plugin name that you are working on instead.

So, now we have a RNG in our plugin, let’s write a command to get a random number. We’ll start with a simple
command named random that just returns a random number from our RNG and takes no arguments. Here’s what that
looks like :

def random(self, irc, msg, args):
"""takes no arguments

Returns the next random number from the random number generator.
"""
irc.reply(str(self.rng.random()))

random = wrap(random)

Same as before, you have to past it with one indentation level. And that’s it. Now here are the important points.

First and foremost, all plugin commands must have all-lowercase function names. If they aren’t all lowercase they
won’t show up in a plugin’s list of commands (nor will they be useable in general). If you look through a plugin and
see a function that’s not in all lowercase, it is not a plugin command. Chances are it is a helper function of some sort,
and in fact using capital letters is a good way of assuring that you don’t accidentally expose helper functions to users
as commands.

You’ll note the arguments to this class method are (self, irc, msg, args). This is what the argument list for all methods
that are to be used as commands must start with. If you wanted additional arguments, you’d append them onto the end,
but since we take no arguments we just stop there. I’ll explain this in more detail with our next command, but it is very
important that all plugin commands are class methods that start with those four arguments exactly as named.

Next, in the docstring there are two major components. First, the very first line dictates the argument list to be displayed
when someone calls the help command for this command (i.e., help random). Then you leave a blank line and start
the actual help string for the function. Don’t worry about the fact that it’s tabbed in or anything like that, as the help
command normalizes it to make it look nice. This part should be fairly brief but sufficient to explain the function and
what (if any) arguments it requires. Remember that this should fit in one IRC message which is typically around a 450
character limit.

Then we have the actual code body of the plugin, which consists of a single line : irc.reply(str(self.rng.random())).
The irc.reply function issues a reply to wherever the PRIVMSG it received the command from with whatever text
is provided. If you’re not sure what I mean when I say « wherever the PRIVMSG it received the command from »,
basically it means : if the command is issued in a channel the response is sent in the channel, and if the command is
issued in a private dialog the response is sent in a private dialog. The text we want to display is simply the next number
from our RNG (self.rng). We get that number by calling the random function, and then we str it just to make sure it is
a nice printable string.

Lastly, all plugin commands must be “wrap’ed. What the wrap function does is handle argument parsing for plugin
commands in a very nice and very powerful way. With no arguments, we simply need to just wrap it. For more in-depth
information on using wrap check out the wrap tutorial (The astute Python programmer may note that this is very much
like a decorator, and that’s precisely what it is. However, we developed this before decorators existed and haven’t
changed the syntax due to our earlier requirement to stay compatible with Python 2.3. As we now require Python 2.4
or greater, this may eventually change to support work via decorators.)

2.1. Generic documentation 37



Limnoria Documentation, Version 0.83.4.1+limnoria

Now let’s create a command with some arguments and see how we use those in our plugin commands. Let’s allow
the user to seed our RNG with their own seed value. We’ll call the command seed and take just the seed value as the
argument (which we’ll require be a floating point value of some sort, though technically it can be any hashable object).
Here’s what this command looks like :

def seed(self, irc, msg, args, seed):
"""<seed>

Sets the internal RNG's seed value to <seed>. <seed> must be a
floating point number.
"""
self.rng.seed(seed)
irc.replySuccess()

seed = wrap(seed, ['float'])

You’ll notice first that argument list now includes an extra argument, seed. If you read the wrap tutorial mentioned
above, you should understand how this arg list gets populated with values. Thanks to wrap we don’t have to worry
about type-checking or value-checking or anything like that. We just specify that it must be a float in the wrap portion
and we can use it in the body of the function.

Of course, we modify the docstring to document this function. Note the syntax on the first line. Arguments go in <>
and optional arguments should be surrounded by [] (we’ll demonstrate this later as well).

The body of the function should be fairly straightforward to figure out, but it introduces a new function -
irc.replySuccess. This is just a generic « I succeeded » command which responds with whatever the bot owner has
configured to be the success response (configured in supybot.replies.success). Note that we don’t do any error-checking
in the plugin, and that’s because we simply don’t have to. We are guaranteed that seed will be a float and so the call to
our RNG’s seed is guaranteed to work.

Lastly, of course, the wrap call. Again, read the wrap tutorial for fuller coverage of its use, but the basic premise is
that the second argument to wrap is a list of converters that handles argument validation and conversion and it then
assigns values to each argument in the arg list after the first four (required) arguments. So, our seed argument gets a
float, guaranteed.

With this alone you’d be able to make some pretty usable plugin commands, but we’ll go through two more commands
to introduce a few more useful ideas. The next command we’ll make is a sample command which gets a random sample
of items from a list provided by the user :

def sample(self, irc, msg, args, n, items):
"""<number of items> <item1> [<item2> ...]

Returns a sample of the <number of items> taken from the remaining
arguments. Obviously <number of items> must be less than the number
of arguments given.
"""
if n > len(items):

irc.error('<number of items> must be less than the number '
'of arguments.')

return
sample = self.rng.sample(items, n)
sample.sort()
irc.reply(utils.str.commaAndify(sample))

sample = wrap(sample, ['int', many('anything')])

This plugin command introduces a few new things, but the general structure should look fairly familiar by now. You
may wonder why we only have two extra arguments when obviously this plugin can accept any number of arguments.
Well, using wrap we collect all of the remaining arguments after the first one into the items argument. If you haven’t
caught on yet, wrap is really cool and extremely useful.

38 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

Next of course is the updated docstring. Note the use of [] to denote the optional items after the first item.

The body of the plugin should be relatively easy to read. First we check and make sure that n (the number of items the
user wants to sample) is not larger than the actual number of items they gave. If it does, we call irc.error with the error
message you see. irc.error is kind of like irc.replySuccess only it gives an error message using the configured error
format (in supybot.replies.error). Otherwise, we use the sample function from our RNG to get a sample, then we sort
it, and we reply with the “utils.str.commaAndify’ed version. The utils.str.commaAndify function basically takes a list
of strings and turns it into « item1, item2, item3, item4, and item5 » for an arbitrary length. More details on using the
utils module can be found in the utils tutorial.

Now for the last command that we will add to our plugin.py. This last command will allow the bot users to roll an
arbitrary n-sided die, with as many sides as they so choose. Here’s the code for this command :

def diceroll(self, irc, msg, args, n):
"""[<number of sides>]

Rolls a die with <number of sides> sides. The default number of sides
is 6.
"""
s = 'rolls a %s' % self.rng.randrange(1, n)
irc.reply(s, action=True)

diceroll = wrap(diceroll, [additional(('int', 'number of sides'), 6)])

The only new thing learned here really is that the irc.reply method accepts an optional argument action, which if set to
True makes the reply an action instead. So instead of just crudely responding with the number, instead you should see
something like * supybot rolls a 5. You’ll also note that it uses a more advanced wrap line than we have used to this
point, but to learn more about wrap, you should refer to the wrap tutorial

And now that we’re done adding plugin commands you should see the boilerplate stuff at the bottom, which just
consists of :

Class = Random

And also some vim modeline stuff. Leave these as is, and we’re finally done with plugin.py !

test.py

Now that we’ve gotten our plugin written, we want to make sure it works. Sure, an easy way to do a somewhat quick
check is to start up a bot, load the plugin, and run a few commands on it. If all goes well there, everything’s probably
okay. But, we can do better than « probably okay ». This is where written plugin tests come in. We can write tests
that not only assure that the plugin loads and runs the commands fine, but also that it produces the expected output for
given inputs. And not only that, we can use the nifty supybot-test script to test the plugin without even having to have
a network connection to connect to IRC with and most certainly without running a local IRC server.

The boilerplate code for test.py is a good start. It imports everything you need and sets up RandomTestCase which
will contain all of our tests. Now we just need to write some test methods. I’ll be moving fairly quickly here just going
over very basic concepts and glossing over details, but the full plugin test authoring tutorial has much more detail to it
and is recommended reading after finishing this tutorial.

Since we have four commands we should have at least four test methods in our test case class. Typically you name the
test methods that simply checks that a given command works by just appending the command name to test. So, we’ll
have testRandom, testSeed, testSample, and testDiceRoll. Any other methods you want to add are more free-form and
should describe what you’re testing (don’t be afraid to use long names).

First we’ll write the testRandom method :

2.1. Generic documentation 39



Limnoria Documentation, Version 0.83.4.1+limnoria

def testRandom(self):
# difficult to test, let's just make sure it works
self.assertNotError('random')

Since we can’t predict what the output of our random number generator is going to be, it’s hard to specify a response
we want. So instead, we just make sure we don’t get an error by calling the random command, and that’s about all we
can do.

Next, testSeed. In this method we’re just going to check that the command itself functions. In another test method later
on we will check and make sure that the seed produces reproducible random numbers like we would hope it would,
but for now we just test it like we did random in “testRandom” :

def testSeed(self):
# just make sure it works
self.assertNotError('seed 20')

Now for testSample. Since this one takes more arguments it makes sense that we test more scenarios in this one. Also
this time we have to make sure that we hit the error that we coded in there given the right conditions :

def testSample(self):
self.assertError('sample 20 foo')
self.assertResponse('sample 1 foo', 'foo')
self.assertRegexp('sample 2 foo bar', '... and ...')
self.assertRegexp('sample 3 foo bar baz', '..., ..., and ...')

So first we check and make sure trying to take a 20-element sample of a 1-element list gives us an error. Next we just
check and make sure we get the right number of elements and that they are formatted correctly when we give 1, 2, or
3 element lists.

And for the last of our basic « check to see that it works » functions, testDiceRoll :

def testDiceRoll(self):
self.assertActionRegexp('diceroll', 'rolls a \d')

We know that diceroll should return an action, and that with no arguments it should roll a single-digit number. And
that’s about all we can test reliably here, so that’s all we do.

Lastly, we wanted to check and make sure that seeding the RNG with seed actually took effect like it’s supposed to.
So, we write another test method :

def testSeedActuallySeeds(self):
# now to make sure things work repeatably
self.assertNotError('seed 20')
m1 = self.getMsg('random')
self.assertNotError('seed 20')
m2 = self.getMsg('random')
self.failUnlessEqual(m1, m2)
m3 = self.getMsg('random')
self.failIfEqual(m2, m3)

So we seed the RNG with 20, store the message, and then seed it at 20 again. We grab that message, and unless they
are the same number when we compare the two, we fail. And then just to make sure our RNG is producing random
numbers, we get another random number and make sure it is distinct from the prior one.

40 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

Conclusion

You are now very well-prepared to write Supybot plugins. Now for a few words of wisdom with regards to Supybot
plugin-writing.

— Read other people’s plugins, especially the included plugins and ones by the core developers. We (the Supybot
dev team) can’t possibly document all the awesome things that Supybot plugins can do, but we try. Nevertheless
there are some really cool things that can be done that aren’t very well-documented.

— Hack new functionality into existing plugins first if writing a new plugin is too daunting.
— Come ask us questions in #supybot on Freenode or OFTC. Going back to the first point above, the developers

themselves can help you even more than the docs can (though we prefer you read the docs first).
— Share your plugins with the world and make Supybot all that more attractive for other users so they will want

to write their plugins for Supybot as well.
— Read, read, read all the documentation.
— And of course, have fun writing your plugins.

2.1.2 Using commands.wrap to parse your command’s arguments

Sommaire

— Using commands.wrap to parse your command’s arguments
— Introduction
— Using Wrap
— Syntax Changes
— Customizing Wrap
— Converter List

— Numbers and time
— Channel
— Words
— Network
— Users, nicks, and permissions
— Matching
— Other

— Contexts List
— Options
— Multiplicity
— Other

— Final Word

Introduction

To plugin developers for older (pre-0.80) versions of Supybot, one of the more annoying aspects of writing commands
was handling the arguments that were passed in. In fact, many commands often had to duplicate parsing and verification
code, resulting in lots of duplicated code for not a whole lot of action. So, instead of forcing plugin writers to come up
with their own ways of cleaning it up, we wrote up the wrap function to handle all of it.

It allows a much simpler and more flexible way of checking things than before and it doesn’t require that you know
the bot internals to do things like check and see if a user exists, or check if a command name exists and whatnot.

If you are a plugin author this document is absolutely required reading, as it will massively ease the task of writing
commands.

2.1. Generic documentation 41



Limnoria Documentation, Version 0.83.4.1+limnoria

Using Wrap

First off, to get the wrap function, it is recommended (strongly) that you use the following import line :

from supybot.commands import *

This will allow you to access the wrap command (and it allows you to do it without the commands prefix). Note that
this line is added to the imports of plugin templates generated by the supybot-plugin-create script.

Let’s write a quickie command that uses wrap to get a feel for how it makes our lives better. Let’s write a command
that repeats a string of text a given number of times. So you could say « repeat 3 foo » and it would say « foofoofoo ».
Not a very useful command, but it will serve our purpose just fine. Here’s how it would be done without wrap :

def repeat(self, irc, msg, args):
"""<num> <text>

Repeats <text> <num> times.
"""
(num, text) = privmsg.getArgs(args, required=2)
try:

num = int(num)
except ValueError:

raise callbacks.ArgumentError
irc.reply(num * text)

Note that all of the argument validation and parsing takes up 5 of the 6 lines (and you should have seen it before we
had privmsg.getArgs !). Now, here’s what our command will look like with wrap applied :

def repeat(self, irc, msg, args, num, text):
"""<num> <text>

Repeats <text> <num> times.
"""
irc.reply(text * num)

repeat = wrap(repeat, ['int', 'text'])

Pretty short, eh ? With wrap all of the argument parsing and validation is handled for us and we get the arguments we
want, formatted how we want them, and converted into whatever types we want them to be - all in one simple function
call that is used to wrap the function ! So now the code inside each command really deals with how to execute the
command and not how to deal with the input.

So, now that you see the benefits of wrap, let’s figure out what stuff we have to do to use it.

Syntax Changes

There are two syntax changes to the old style that are implemented. First, the definition of the command function must
be changed. The basic syntax for the new definition is :

def commandname(self, irc, msg, args, <arg1>, <arg2>, ...):

Where arg1 and arg2 (up through as many as you want) are the variables that will store the parsed arguments. « Now
where do these parsed arguments come from ? » you ask. Well, that’s where the second syntax change comes in.
The second syntax change is the actual use of the wrap function itself to decorate our command names. The basic
decoration syntax is :

commandname = wrap(commandname, [converter1, converter2, ...])

42 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

Note : This should go on the line immediately following the body of the command’s definition, so it can easily be
located (and it obviously must go after the command’s definition so that commandname is defined).

Each of the converters in the above listing should be one of the converters in commands.py (I will describe each
of them in detail later.) The converters are applied in order to the arguments given to the command, generally taking
arguments off of the front of the argument list as they go. Note that each of the arguments is actually a string containing
the NAME of the converter to use and not a reference to the actual converter itself. This way we can have converters
with names like int and not have to worry about polluting the builtin namespace by overriding the builtin int.

As you will find out when you look through the list of converters below, some of the converters actually take arguments.
The syntax for supplying them (since we aren’t actually calling the converters, but simply specifying them), is to wrap
the converter name and args list into a tuple. For example :

commandname = wrap(commandname, [(converterWithArgs, arg1, arg2),
converterWithoutArgs1, converterWithoutArgs2])

For the most part you won’t need to use an argument with the converters you use either because the defaults are
satisfactory or because it doesn’t even take any.

Customizing Wrap

Converters alone are a pretty powerful tool, but for even more advanced (yet simpler !) argument handling you may
want to use contexts. Contexts describe how the converters are applied to the arguments, while the converters them-
selves do the actual parsing and validation.

For example, one of the contexts is « optional ». By using this context, you’re saying that a given argument is not
required, and if the supplied converter doesn’t find anything it likes, we should use some default. Yet another example
is the « reverse » context. This context tells the supplied converter to look at the last argument and work backwards
instead of the normal first-to-last way of looking at arguments.

So, that should give you a feel for the role that contexts play. They are not by any means necessary to use wrap. All
of the stuff we’ve done to this point will work as-is. However, contexts let you do some very powerful things in very
easy ways, and are a good thing to know how to use.

Now, how do you use them ? Well, they are in the global namespace of src/commands.py, so your previous import
line will import them all ; you can call them just as you call wrap. In fact, the way you use them is you simply call
the context function you want to use, with the converter (and its arguments) as arguments. It’s quite simple. Here’s an
example :

commandname = wrap(commandname, [optional('int'), many('something')])

In this example, our command is looking for an optional integer argument first. Then, after that, any number of
arguments which can be anything (as long as they are something, of course).

Do note, however, that the type of the arguments that are returned can be changed if you apply a context to it. So,
optional(« int ») may very well return None as well as something that passes the « int » converter, because after all it’s
an optional argument and if it is None, that signifies that nothing was there. Also, for another example, many(« some-
thing ») doesn’t return the same thing that just « something » would return, but rather a list of « something »s.

Converter List

Below is a list of all the available converters to use with wrap. If the converter accepts any arguments, they are listed
after it and if they are optional, the default value is shown.

2.1. Generic documentation 43



Limnoria Documentation, Version 0.83.4.1+limnoria

Numbers and time

expiry

Takes a number of seconds and adds it to the current time to create an expiration timestamp.

id, kind= »integer »

Returns something that looks like an integer ID number. Takes an optional « kind » argument for you to
state what kind of ID you are looking for, though this doesn’t affect the integrity-checking. Basically re-
quires that the argument be an integer, does no other integrity-checking, and provides a nice error message
with the kind in it.

index

Basically (« int », « index »), but with a twist. This will take a 1-based index and turn it into a 0-based
index (which is more useful in code). It doesn’t transform 0, and it maintains negative indices as is (note
that it does allow them !).

int, type= »integer », p=None

Gets an integer. The « type » text can be used to customize the error message received when the argument
is not an integer. « p » is an optional predicate to test the integer with. If p(i) fails (where i is the integer
arg parsed out of the argument string), the arg will not be accepted.

now

Simply returns the current timestamp as an arg, does not reference or modify the argument list.

long, type= »long »

Basically the same as int minus the predicate, except that it converts the argument to a long integer
regardless of the size of the int.

float, type= »floating point number »

Basically the same as int minus the predicate, except that it converts the argument to a float.

nonInt, type= »non-integer value »

Accepts everything but integers, and returns them unchanged. The « type » value, as always, can be used
to customize the error message that is displayed upon failure.

positiveInt

Accepts only positive integers.

nonNegativeInt

Accepts only non-negative integers.

Channel

channelDb

Sets the channel appropriately in order to get to the databases for that channel (handles whether or not a
given channel uses channel-specific databases and whatnot).

channel

Gets a channel to use the command in. If the channel isn’t supplied, uses the channel the message was
sent in. If using a different channel, does sanity-checking to make sure the channel exists on the current
IRC network.

inChannel

Requires that the command be called from within any channel that the bot is currently in or with one of
those channels used as an argument to the command.

onlyInChannel

44 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

Requires that the command be called from within any channel that the bot is currently in.

callerInGivenChannel

Takes the given argument as a channel and makes sure that the caller is in that channel.

public

Requires that the command be sent in a channel instead of a private message.

private

Requires that the command be sent in a private message instead of a channel.

validChannel

Gets a channel argument once it makes sure it’s a valid channel.

Words

color

Accepts arguments that describe a text color code (e.g., « black », « light blue ») and returns the mIRC
color code for that color. (Note that many other IRC clients support the mIRC color code scheme, not just
mIRC)

letter

Looks for a single letter. (Technically, it looks for any one-element sequence).

literal, literals, errmsg=None

Takes a required sequence or string (literals) and any argument that uniquely matches the starting substring
of one of the literals is transformed into the full literal. For example, with ("literal", ("bar",
"baz", "qux")), you’d get « bar » for « bar », « baz » for « baz », and « qux » for any of « q », « qu »,
or « qux ». « b » and « ba » would raise errors because they don’t uniquely identify one of the literals in
the list. You can override errmsg to provide a specific (full) error message, otherwise the default argument
error message is displayed.

lowered

Returns the argument lowered (NOTE : it is lowered according to IRC conventions, which does strange
mapping with some punctuation characters).

to

Returns the string « to » if the arg is any form of « to » (case-insensitive).

Network

ip

Checks and makes sure the argument looks like a valid IP and then returns it.

url

Checks for a valid URL.

httpUrl

Checks for a valid HTTP URL.

2.1. Generic documentation 45



Limnoria Documentation, Version 0.83.4.1+limnoria

Users, nicks, and permissions

haveOp, action= »do that »

Simply requires that the bot have ops in the channel that the command is called in. The action parameter
completes the error message : « I need to be opped to . . . ».

nick

Checks that the arg is a valid nick on the current IRC server.

seenNick

Checks that the arg is a nick that the bot has seen (NOTE : this is limited by the size of the history buffer
that the bot has).

nickInChannel

Requires that the argument be a nick that is in the current channel, and returns that nick.

capability

Used to retrieve an argument that describes a capability.

hostmask

Returns the hostmask of any provided nick or hostmask argument.

banmask

Returns a generic banmask of the provided nick or hostmask argument.

user

Requires that the caller be a registered user.

otherUser

Returns the user specified by the username or hostmask in the argument.

owner

Requires that the command caller has the « owner » capability.

admin

Requires that the command caller has the « admin » capability.

checkCapability, capability

Checks to make sure that the caller has the specified capability.

checkChannelCapability, capability Checks to make sure that the caller has the specified capability on the chan-
nel the command is called in.

Matching

anything

Returns anything as is.

something, errorMsg=None, p=None

Takes anything but the empty string. errorMsg can be used to customize the error message. p is any
predicate function that can be used to test the validity of the input.

somethingWithoutSpaces

Same as something, only with the exception of disallowing spaces of course.

matches, regexp, errmsg

Searches the args with the given regexp and returns the matches. If no match is found, errmsg is given.

regexpMatcher

46 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

Gets a matching regexp argument (m// or //).

glob

Gets a glob string. Basically, if there are no wildcards (*, ?) in the argument, returns *string*, making
a glob string that matches anything containing the given argument.

regexpReplacer

Gets a replacing regexp argument (s//).

Other

networkIrc, errorIfNoMatch=False

Returns the IRC object of the specified IRC network. If one isn’t specified, the IRC object of the IRC
network the command was called on is returned.

plugin, require=True

Returns the plugin specified by the arg or None. If require is True, an error is raised if the plugin cannot
be retrieved.

boolean

Converts the text string to a boolean value. Acceptable true values are : « 1 », « true », « on », « enable »,
or « enabled » (case-insensitive). Acceptable false values are : « 0 », false », « off », « disable », or
« disabled » (case-insensitive).

filename

Used to get a filename argument.

commandName

Returns the canonical command name version of the given string (ie, the string is lowercased and dashes
and underscores are removed).

text

Takes the rest of the arguments as one big string. Note that this differs from the « anything » context in
that it clobbers the arg string when it’s done. Using any converters after this is most likely incorrect.

Contexts List

What contexts are available for me to use ?

The list of available contexts is below. Unless specified otherwise, it can be assumed that the type returned by the
context itself matches the type of the converter it is applied to.

Options

optional Look for an argument that satisfies the supplied converter, but if it’s not the type I’m expecting or there
are no arguments for us to check, then use the default value. Will return the converted argument as is or None.

additional Look for an argument that satisfies the supplied converter, making sure that it’s the right type. If there
aren’t any arguments to check, then use the default value. Will return the converted argument as is or None.

first Tries each of the supplied converters in order and returns the result of the first successfully applied converter.

2.1. Generic documentation 47



Limnoria Documentation, Version 0.83.4.1+limnoria

Multiplicity

any Looks for any number of arguments matching the supplied converter. Will return a sequence of converted
arguments or None.

many Looks for multiple arguments matching the supplied converter. Expects at least one to work, otherwise it
will fail. Will return the sequence of converted arguments.

commalist Looks for a comma separated list of arguments that match the supplied converter. Returns a list of the
successfully converted arguments. If any of the arguments fail, this whole context fails.

Other

rest Treat the rest of the arguments as one big string, and then convert. If the conversion is unsuccessful, restores
the arguments.

getopts Handles –option style arguments. Each option should be a key in a dictionary that maps to the name of
the converter that is to be used on that argument. To make the option take no argument, use « » as the converter
name in the dictionary. For no conversion, use None as the converter name in the dictionary.

reverse Reverse the argument list, apply the converters, and then reverse the argument list back.

Final Word

Now that you know how to use wrap, and you have a list of converters and contexts you can use, your task of writing
clean, simple, and safe plugin code should become much easier. Enjoy !

2.1.3 Style Guidelines

Note : Code not following these style guidelines fastidiously is likely (very likely) not to be accepted into the Supybot
core.

— Read PEP 8 (Guido’s Style Guide) and know that we use almost all the same style guidelines.
— Maximum line length is 79 characters. 78 is a safer bet, though. This is NON-NEGOTIABLE. Your code will

not be accepted while you are violating this guidline.
— Identation is 4 spaces per level. No tabs. This also is NON-NEGOTIABLE. Your code, again, will never be

accepted while you have literal tabs in it.
— Single quotes are used for all string literals that aren’t docstrings. They’re just easier to type.
— Triple double quotes (""") are always used for docstrings.
— Raw strings (r'' or r"") should be used for regular expressions.
— Spaces go around all operators (except around = in default arguments to functions) and after all commas (unless

doing so keeps a line within the 79 character limit).
— Functions calls should look like foo(bar(baz(x), y)). They should not look like foo (bar (baz

(x), y)), or like foo(bar(baz(x), y) ) or like anything else. I hate extraneous spaces.
— Class names are StudlyCaps. Method and function names are camelCaps (StudlyCaps with an initial lowercase

letter). If variable and attribute names can maintain readability without being camelCaps, then they should be
entirely in lowercase, otherwise they should also use camelCaps. Plugin names are StudlyCaps.

— Imports should always happen at the top of the module, one import per line (so if imports need to be added or
removed later, it can be done easily).

— Unless absolutely required by some external force, imports should be ordered by the string length of the module
imported. I just think it looks prettier.

— A blank line should be between all consecutive method declarations in a class definition. Two blank lines
should be between all consecutive class definitions in a file. Comments are even better than blank lines for
separating classes.

48 Chapitre 2. Developing plugins for Limnoria

https://www.python.org/dev/peps/pep-0008


Limnoria Documentation, Version 0.83.4.1+limnoria

— Database filenames should generally begin with the name of the plugin and the extension should be “db”.
plugins.DBHandler does this already.

— Whenever creating a file descriptor or socket, keep a reference around and be sure to close it. There should be
no code like this :

s = urllib2.urlopen('url').read()

Instead, do this :

fd = urllib2.urlopen('url')
try:

s = fd.read()
finally:

fd.close()

This is to be sure the bot doesn’t leak file descriptors.
— All plugin files should include a docstring decsribing what the plugin does. This docstring will be returned

when the user is configuring the plugin. All plugin classes should also include a docstring describing how to
do things with the plugin ; this docstring will be returned when the user requests help on a plugin name.

— Method docstrings in classes deriving from callbacks.Privmsg should include an argument list as their first line,
and after that a blank line followed by a longer description of what the command does. The argument list is
used by the syntax command, and the longer description is used by the help command.

— Whenever joining more than two strings, use string interpolation, not addition :

s = x + y + z # Bad.
s = '%s%s%s' % (x, y, z) # Good.
s = ''.join([x, y, z]) # Best, but not as general.

This has to do with efficiency ; the intermediate string x+y is made (and thus copied) before x+y+z is made, so
it’s less efficient. People who use string concatenation in a for loop will be swiftly kicked in the head.

— When writing strings that have formatting characters in them, don’t use anything but %s unless you absolutely
must. In particular, %d should never be used, it’s less general than %s and serves no useful purpose. If you got
the %d wrong, you’ll get an exception that says, « foo instance can’t be converted to an integer. » But if you use
%s, you’ll get to see your nice little foo instance, if it doesn’t convert to a string cleanly, and if it does convert
cleanly, you’ll get to see what you expect to see. Basically, %d just sucks.

— As a corrolary to the above, note that sometimes %f is used, but on when floats need to be formatted, e.g.,
%.2f.

— Use the log module to its fullest ; when you need to print some values to debug, use self.log.debug to do so,
and leave those statements in the code (commented out) so they can later be re-enabled. Remember that once
code is buggy, it tends to have more bugs, and you’ll probably need those print statements again.

— While on the topic of logs, note that we do not use % (i.e., str.__mod__) with logged strings ; we simple pass
the format parameters as additional arguments. The reason is simple : the logging module supports it, and it’s
cleaner (fewer tokens/glyphs) to read.

— While still on the topic of logs, it’s also important to pick the appropriate log level for given information.
— DEBUG : Appropriate to tell a programmer how we’re doing something (i.e., debugging printfs, basically).

If you’re trying to figure out why your code doesn’t work, DEBUG is the new printf – use that, and leave
the statements in your code.

— INFO : Appropriate to tell a user what we’re doing, when what we’re doing isn’t important for the user to
pay attention to. A user who likes to keep up with things should enjoy watching our logging at the INFO
level ; it shouldn’t be too low-level, but it should give enough information that it keeps them relatively
interested at peak times.

— WARNING : Appropriate to tell a user when we’re doing something that they really ought to pay attention
to. Users should see WARNING and think, « Hmm, should I tell the Supybot developers about this ? »
Later, they should decide not to, but it should give the user a moment to pause and think about what’s
actually happening with their bot.

— ERROR : Appropriate to tell a user when something has gone wrong. Uncaught exceptions are ERRORs.
Conditions that we absolutely want to hear about should be errors. Things that should scare the user should

2.1. Generic documentation 49



Limnoria Documentation, Version 0.83.4.1+limnoria

be errors.
— CRITICAL : Not really appropriate. I can think of no absolutely critical issue yet encountered in Supybot ;

the only possible thing I can imagine is to notify the user that the partition on which Supybot is running
has filled up. That would be a CRITICAL condition, but it would also be hard to log :)

— All plugins should have test cases written for them. Even if it doesn’t actually test anything but just exists, it’s
good to have the test there so there’s a place to add more tests later (and so we can be sure that all plugins are
adequately documented ; PluginTestCase checks that every command has documentation)

— All uses of eval() that expect to get integrated in Supybot must be approved by jemfinch, no exceptions. Chances
are, it won’t be accepted. Have you looked at utils.safeEval ?

— SQL table names should be all-lowercase and include underscores to separate words. This is because SQL
itself is case-insensitive. This doesn’t change, however the fact that variable/member names should be camel
case.

— SQL statements in code should put SQL words in ALL CAPS :

"""SELECT quote FROM quotes ORDER BY random() LIMIT 1"""

This makes SQL significantly easier to read.
— Common variable names

— L => an arbitrary list.
— t => an arbitrary tuple.
— x => an arbitrary float.
— s => an arbitrary string.
— f => an arbitrary function.
— p => an arbitrary predicate.
— i,n => an arbitrary integer.
— cb => an arbitrary callback.
— db => a database handle.
— fd => a file-like object.
— msg => an ircmsgs.IrcMsg object.
— irc => an irclib.Irc object (or proxy)
— nick => a string that is an IRC nick.
— channel => a string that is an IRC channel.
— hostmask => a string that is a user’s IRC prefix.
When the semantic functionality (that is, the « meaning » of a variable is obvious from context), one of these
names should be used. This just makes it easier for people reading our code to know what a variable represents
without scouring the surrounding code.

— Multiple variable assignments should always be surrounded with parentheses – i.e., if you’re using the partition
function, then your assignment statement should look like :

(good, bad) = partition(p, L)

The parentheses make it obvious that you’re doing a multiple assignment, and that’s important because I hate
reading code and wondering where a variable came from.

2.1.4 Advanced Plugin Config

This tutorial covers some of the more advanced plugin config features available to Supybot plugin authors.

What’s This Tutorial For ?

Brief overview of what this tutorial covers and the target audience.

Want to know the crazy advanced features available to you, the Supybot plugin author ? Well, this is the tutorial for you.
This article assumes you’ve read the Supybot plugin author tutorial since all the basics of plugin config are handled

50 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

there first.

In this tutorial we’ll cover :
— Using the configure function more effectively by using the functions provided in supybot.questions
— Creating config variable groups and config variables underneath those groups.
— The built-in config variable types (« registry types ») for use with config variables
— Creating custom registry types to handle config variable values more effectively

Using “configure” effectively

How to use “configure” effectively using the functions from “supybot.questions”

In the original Supybot plugin author tutorial you’ll note that we gloss over the configure portion of the config.py file
for the sake of keeping the tutorial to a reasonable length. Well, now we’re going to cover it in more detail.

The supybot.questions module is a nice little module coded specifically to help clean up the configure section of every
plugin’s config.py. The boilerplate config.py code imports the four most useful functions from that module :

— « expect » is a very general prompting mechanism which can specify certain inputs that it will accept and also
specify a default response. It takes the following arguments :
— prompt : The text to be displayed
— possibilities : The list of possible responses (can be the empty list, [])
— default (optional) : Defaults to None. Specifies the default value to use if the user enters in no input.
— acceptEmpty (optional) : Defaults to False. Specifies whether or not to accept no input as an answer.

— « anything » is basically a special case of expect which takes anything (including no input) and has no default
value specified. It takes only one argument :
— prompt : The text to be displayed

— « something » is also a special case of expect, requiring some input and allowing an optional default. It takes
the following arguments :
— prompt : The text to be displayed
— default (optional) : Defaults to None. The default value to use if the user doesn’t input anything.

— « yn » is for « yes or no » questions and basically forces the user to input a « y » for yes, or « n » for no. It
takes the following arguments :
— prompt : The text to be displayed
— default (optional) : Defaults to None. Default value to use if the user doesn’t input anything.

All of these functions, with the exception of « yn », return whatever string results as the answer whether it be input
from the user or specified as the default when the user inputs nothing. The « yn » function returns True for « yes »
answers and False for « no » answers.

For the most part, the latter three should be sufficient, but we expose expect to anyone who needs a more specialized
configuration.

Let’s go through a quick example configure that covers all four of these functions. First I’ll give you the code, and then
we’ll go through it, discussing each usage of a supybot.questions function just to make sure you realize what the code
is actually doing. Here it is :

def configure(advanced):
# This will be called by supybot to configure this module. advanced is
# a bool that specifies whether the user identified himself as an advanced
# user or not. You should effect your configuration by manipulating the
# registry as appropriate.
from supybot.questions import expect, anything, something, yn
WorldDom = conf.registerPlugin('WorldDom', True)
if yn("""The WorldDom plugin allows for total world domination

with simple commands. Would you like these commands to
be enabled for everyone?""", default=False):

WorldDom.globalWorldDominationRequires.setValue("")

(suite sur la page suivante)

2.1. Generic documentation 51



Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

else:
cap = something("""What capability would you like to require for

this command to be used?""", default="Admin")
WorldDom.globalWorldDominationRequires.setValue(cap)

dir = expect("""What direction would you like to attack from in
your quest for world domination?""",

["north", "south", "east", "west", "ABOVE"],
default="ABOVE")

WorldDom.attackDirection.setValue(dir)

As you can see, this is the WorldDom plugin, which I am currently working on. The first thing our configure function
checks is to see whether or not the bot owner would like the world domination commands in this plugin to be available
to everyone. If they say yes, we set the globalWorldDominationRequires configuration variable to the empty string,
signifying that no specific capabilities are necessary. If they say no, we prompt them for a specific capability to check
for, defaulting to the « Admin » capability. Here they can create their own custom capability to grant to folks which
this plugin will check for if they want, but luckily for the bot owner they don’t really have to do this since Supybot’s
capabilities system can be flexed to take care of this.

Lastly, we check to find out what direction they want to attack from as they venture towards world domination. I prefer
« death from above ! », so I made that the default response, but the more boring cardinal directions are available as
choices as well.

Using Config Groups

A brief overview of how to use config groups to organize config variables

Supybot’s Hierarchical Configuration

Supybot’s configuration is inherently hierarchical, as you’ve probably already figured out in your use of the bot.
Naturally, it makes sense to allow plugin authors to create their own hierarchies to organize their configuration variables
for plugins that have a lot of plugin options. If you’ve taken a look at the plugins that Supybot comes with, you’ve
probably noticed that several of them take advantage of this. In this section of this tutorial we’ll go over how to make
your own config hierarchy for your plugin.

Here’s the brilliant part about Supybot config values which makes hierarchical structuring all that much easier - values
are groups. That is, any config value you may already defined in your plugins can already be treated as a group, you
simply need to know how to add items to that group.

Now, if you want to just create a group that doesn’t have an inherent value you can do that as well, but you’d be
surprised at how rarely you have to do that. In fact if you look at most of the plugins that Supybot comes with, you’ll
only find that we do this in a handful of spots yet we use the « values as groups » feature quite a bit.

Creating a Config Group

As stated before, config variables themselves are groups, so you can create a group simply by creating a configuration
variable :

conf.registerGlobalValue(WorldDom, 'globalWorldDominationRequires',
registry.String('', """Determines the capability required to access the

world domination commands in this plugin."""))

As you probably know by now this creates the config variable supy-
bot.plugins.WorldDom.globalWorldDominationRequires which you can access/set using the Config plugin directly on

52 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

the running bot. What you may not have known prior to this tutorial is that that variable is also a group. Specifically, it
is now the WorldDom.globalWorldDominationRequires group, and we can add config variables to it ! Unfortunately,
this particular bit of configuration doesn’t really require anything underneath it, so let’s create a new group which
does using the « create only a group, not a value » command.

Let’s create a configurable list of targets for different types of attacks (land, sea, air, etc.). We’ll call the group attack-
Targets. Here’s how you create just a config group alone with no value assigned :

conf.registerGroup(WorldDom, 'attackTargets')

The first argument is just the group under which you want to create your new group (and we got World-
Dom from conf.registerPlugin which was in our boilerplate code from the plugin creation wizard). The se-
cond argument is, of course, the group name. So now we have WorldDom.attackTargets (or, fully, supy-
bot.plugins.WorldDom.attackTargets).

Adding Values to a Group

Actually, you’ve already done this several times, just never to a custom group of your own. You’ve always added config
values to your plugin’s config group. With that in mind, the only slight modification needed is to simply point to the
new group :

conf.registerGlobalValue(WorldDom.attackTargets, 'air',
registry.SpaceSeparatedListOfStrings('', """Contains the list of air

targets."""))

And now we have a nice list of air targets ! You’ll notice that the first argument is WorldDom.attackTargets, our new
group. Make sure that the conf.registerGroup call is made before this one or else you’ll get a nasty AttributeError.

Variations

Channel-specific values

A very handy feature is channel-specific variables, which allows bot administrators to set a global value (as for non-
channel-specific values AND another value for specific channels).

The syntax is pretty much like the previous one, except we use registerChannelValue instead of registerGlobalValue :

conf.registerChannelValue(WorldDom.attackTargets, 'air',
registry.SpaceSeparatedListOfStrings('', """Contains the list of air

targets."""))

Private values

Variable type also take an optional argument, for setting a configuration variable to private (useful for passwords,
authentication tokens, api keys, . . . ) :

conf.registerChannelValue(WorldDom.attackTargets, 'air',
registry.SpaceSeparatedListOfStrings('', """Contains the list of air

targets.""", private=True))

2.1. Generic documentation 53



Limnoria Documentation, Version 0.83.4.1+limnoria

Accessing the configuration registry

Of course, you can access the variables in your plugins.

If it is a variable created by your plugin, you can do it like this (if the configuration variable’s name is air) :

self.registryValue('air')

and it will return data of the right type (in this case, a list of string, as we declarated it above as a regis-
try.SpaceSeparatedListOfStrings).

If it is a channel-specific variable, you can get the value on #channel like this (if the variable is not defined on this
channel, it defaults to the global one) :

self.registryValue('air', '#channel')

You can also set configuration variables (either globally or for a single channel) :

self.setRegistryValue('air', value=['foo', 'bar'])
self.setRegistryValue('air', value=['foo', 'bar'], channel=channel)

You can also access other configuration variables (or your own if you want) via the supybot.conf module :

conf.supybot.plugins.WorldDom.air()
conf.supybot.plugins.WorldDom.get('air')()
conf.supybot.plugins.WorldDom.air.get('#channel')()
conf.supybot.plugins.WorldDom.air.setValue(['foo'])
conf.supybot.plugins.WorldDom.air.get('#channel').setValue(['foo'])

The Built-in Registry Types

A rundown of all of the built-in registry types available for use with config variables.

The « registry » module defines the following config variable types for your use (I’ll include the “registry.” on each one
since that’s how you’ll refer to it in code most often). Most of them are fairly self-explanatory, so excuse the boring
descriptions :

— registry.Boolean - A simple true or false value. Also accepts the following for true : « true », « on » « enable »,
« enabled », « 1 », and the following for false : « false », « off », « disable », « disabled », « 0 »,

— registry.Integer - Accepts any integer value, positive or negative.
— registry.NonNegativeInteger - Will hold any non-negative integer value.
— registry.PositiveInteger - Same as above, except that it doesn’t accept 0 as a value.
— registry.Float - Accepts any floating point number.
— registry.PositiveFloat - Accepts any positive floating point number.
— registry.Probability - Accepts any floating point number between 0 and 1 (inclusive, meaning 0 and 1 are also

valid).
— registry.String - Accepts any string that is not a valid Python command
— registry.NormalizedString - Accepts any string (with the same exception above) but will normalize sequential

whitespace to a single space..
— registry.StringSurroundedBySpaces - Accepts any string but assures that it has a space preceding and following

it. Useful for configuring a string that goes in the middle of a response.
— registry.StringWithSpaceOnRight - Also accepts any string but assures that it has a space after it. Useful for

configuring a string that begins a response.
— registry.Regexp - Accepts only valid (Perl or Python) regular expressions
— registry.SpaceSeparatedListOfStrings - Accepts a space-separated list of strings.

54 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

There are a few other built-in registry types that are available but are not usable in their current state, only by creating
custom registry types, which we’ll go over in the next section.

Custom Registry Types

How to create and use your own custom registry types for use in customizing plugin config variables.

Why Create Custom Registry Types ?

For most configuration, the provided types in the registry module are sufficient. However, for some configuration
variables it’s not only convenient to use custom registry types, it’s actually recommended. Customizing registry types
allows for tighter restrictions on the values that get set and for greater error-checking than is possible with the provided
types.

What Defines a Registry Type ?

First and foremost, it needs to subclass one of the existing registry types from the registry module, whether it be one
of the ones in the previous section or one of the other classes in registry specifically designed to be subclassed.

Also it defines a number of other nice things : a custom error message for your type, customized value-setting (trans-
forming the data you get into something else if wanted), etc.

Creating Your First Custom Registry Type

As stated above, priority number one is that you subclass one of the types in the registry module. Basically, you just
subclass one of those and then customize whatever you want. Then you can use it all you want in your own plugins.
We’ll do a quick example to demonstrate.

We already have registry.Integer and registry.PositiveInteger, but let’s say we want to accept only negative integers.
We can create our own NegativeInteger registry type like so :

class NegativeInteger(registry.Integer):
"""Value must be a negative integer."""
def setValue(self, v):

if v >= 0:
self.error()

registry.Integer.setValue(self, v)

All we need to do is define a new error message for our custom registry type (specified by the docstring for the class),
and customize the setValue function. Note that all you have to do when you want to signify that you’ve gotten an
invalid value is to call self.error(). Finally, we call the parent class’s setValue to actually set the value.

What Else Can I Customize ?

Well, the error string and the setValue function are the most useful things that are available for customization, but
there are other things. For examples, look at the actual built-in registry types defined in registry.py (in the src directory
distributed with the bot).

2.1. Generic documentation 55



Limnoria Documentation, Version 0.83.4.1+limnoria

What Subclasses Can I Use ?

Chances are one of the built-in types in the previous section will be sufficient, but there are a few others of note which
deserve mention :

— registry.Value - Provides all the core functionality of registry types (including acting as a group for other config
variables to reside underneath), but nothing more.

— registry.OnlySomeStrings - Allows you to specify only a certain set of strings as valid values. Simply override
validStrings in the inheriting class and you’re ready to go.

— registry.SeparatedListOf - The generic class which is the parent class to registry.SpaceSeparatedListOfStrings.
Allows you to customize four things : the type of sequence it is (list, set, tuple, etc.), what each item must be
(String, Boolean, etc.), what separates each item in the sequence (using custom splitter/joiner functions), and
whether or not the sequence is to be sorted. Look at the definitions of registry.SpaceSeparatedListOfStrings
and registry.CommaSeparatedListOfStrings at the bottom of registry.py for more information. Also, there will
be an example using this in the section below.

Using My Custom Registry Type

Using your new registry type is relatively straightforward. Instead of using whatever registry built-in you might have
used before, now use your own custom class. Let’s say we define a registry type to handle a comma-separated list of
probabilities :

class CommaSeparatedListOfProbabilities(registry.SeparatedListOf):
Value = registry.Probability
def splitter(self, s):

return re.split(r'\s*,\s*', s)
joiner = ', '.join

Now, to use that type we simply have to specify it whenever we create a config variable using it :

conf.registerGlobalValue(SomePlugin, 'someConfVar',
CommaSeparatedListOfProbabilities('0.0, 1.0', """Holds the list of
probabilities for whatever."""))

Note that we initialize it just the same as we do any other registry type, with two arguments : the default value, and
then the description of the config variable.

Configuration hooks

Note : Until stock Supybot or Gribble merge this feature, this section only applies to Limnoria.

It is possible to get a function called when a configuration variable is changed. While this is usually not useful (you
get the value whenever you need it), some plugins do use it, for instance for caching results or for pre-fetching data.

Let’s say you want to write a plugin that prints nick changed in the logs when supybot.nick is edited. You can do it like
this :

class LogNickChange(callbacks.Plugin):
"""Some useless plugin."""

def __init__(self, irc):
self.__parent = super(LogNickChange, self)
self.__parent.__init__(irc)

(suite sur la page suivante)

56 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

conf.supybot.nick.addCallback(self._configCallback)

def _configCallback(self, name=None):
self.log.info('nick changed')

As not all Supybot versions support it (yet), it can be a good idea to show a warning instead of crashing on those
versions :

class LogNickChange(callbacks.Plugin):
"""Some useless plugin."""

def __init__(self, irc):
self.__parent = super(LogNickChange, self)
self.__parent.__init__(irc)
try:

conf.supybot.nick.addCallback(self._configCallback)
except registry.NonExistentRegistryEntry:

self.log.error('Your version of Supybot is not compatible '
'with configuration hooks, but this plugin '
'requires them to work.')

def _configCallback(self, name=None):
self.log.info('nick changed')

Note : For the moment, the name parameter is never given when the callback is called. However, in the future, it
will be set to the name of the variable that has been changed (useful if you want to use the same callback for multiple
variable), so it is better to allow this parameter.

2.1.5 Advanced Plugin Testing

The complete guide to writing tests for your plugins.

Why Write Tests ?

Why should I write tests for my plugin ? Here’s why.

For those of you asking « Why should I write tests for my plugin ? I tried it out, and it works ! », read on. For those of
you who already realize that Testing is Good (TM), skip to the next section.

Here are a few quick reasons why to test your Supybot plugins.
— When/if we rewrite or change certain features in Supybot, tests make sure your plugin will work with these

changes. It’s much easier to run supybot-test MyPlugin after upgrading the code and before even reloading the
bot with the new code than it is to load the bot with new code and then load the plugin only to realize certain
things don’t work. You may even ultimately decide you want to stick with an older version for a while as you
patch your custom plugin. This way you don’t have to rush a patch while restless users complain since you’re
now using a newer version that doesn’t have the plugin they really like.

— Running the automated tests takes a few seconds, testing plugins in IRC on a live bot generally takes quite a
bit longer. We make it so that writing tests generally doesn’t take much time, so a small initial investment adds
up to lots of long-term gains.

— If you want your plugin to be included in any of our releases (the core Supybot if you think it’s worthy, or our
supybot-plugins package), it has to have tests. Period.

For a bigger list of why to write unit tests, check out this article :

2.1. Generic documentation 57



Limnoria Documentation, Version 0.83.4.1+limnoria

http://www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html

and also check out what the Extreme Programming folks have to say about unit tests :

http://www.extremeprogramming.org/rules/unittests.html

Plugin Tests

How to write tests for commands in your plugins.

Introduction

This tutorial assumes you’ve read through the plugin author tutorial, and that you used supybot-plugin-create to create
your plugin (as everyone should). So, you should already have all the necessary imports and all that boilerplate stuff
in test.py already, and you have already seen what a basic plugin test looks like from the plugin author tutorial. Now
we’ll go into more depth about what plugin tests are available to Supybot plugin authors.

Plugin Test Case Classes

Supybot comes with two plugin test case classes, PluginTestCase and ChannelPluginTestCase. The former is used
when it doesn’t matter whether or not the commands are issued in a channel, and the latter is used for when it does.
For the most part their API is the same, so unless there’s a distinction between the two we’ll treat them as one and the
same when discussing their functionality.

The Most Basic Plugin Test Case

At the most basic level, a plugin test case requires three things :
— the class declaration (subclassing PluginTestCase or ChannelPluginTestCase)
— a list of plugins that need to be loaded for these tests (does not include Owner, Misc, or Config, those are

always automatically loaded) - often this is just the name of the plugin that you are writing tests for
— some test methods

Here’s what the most basic plugin test case class looks like (for a plugin named MyPlugin) :

class MyPluginTestCase(PluginTestCase):
plugins = ('MyPlugin',)

def testSomething(self):
# assertions and such go here

Your plugin test case should be named TestCase as you see above, though it doesn’t necessarily have to be named that
way (supybot-plugin-create puts that in place for you anyway). As you can see we elected to subclass PluginTestCase
because this hypothetical plugin apparently doesn’t do anything channel-specific.

As you probably noticed, the plugins attribute of the class is where the list of necessary plugins goes, and in this case
just contains the plugin that we are testing. This will be the case for probably the majority of plugins. A lot of the time
test writers will use a bot function that performs some function that they don’t want to write code for and they will just
use command nesting to feed the bot what they need by using that plugin’s functionality. If you choose to do this, only
do so with core bot plugins as this makes distribution of your plugin simpler. After all, we want people to be able to
run your plugin tests without having to have all of your plugins !

One last thing to note before moving along is that each of the test methods should describe what they are testing. If you
want to test that your plugin only responds to registered users, don’t be afraid to name your test method testOnlyRes-
pondingToRegisteredUsers or testNotRespondingToUnregisteredUsers. You may have noticed some rather long and

58 Chapitre 2. Developing plugins for Limnoria

http://www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html
http://www.extremeprogramming.org/rules/unittests.html


Limnoria Documentation, Version 0.83.4.1+limnoria

seemingly unwieldy test method names in our code, but that’s okay because they help us know exactly what’s failing
when we run our tests. With an ambiguously named test method we may have to crack open test.py after running the
tests just to see what it is that failed. For this reason you should also test only one thing per test method. Don’t write
a test method named testFoobarAndBaz. Just write two test methods, testFoobar and testBaz. Also, it is important to
note that test methods must begin with test and that any method within the class that does begin with test will be run
as a test by the supybot-test program. If you want to write utility functions in your test class that’s fine, but don’t name
them something that begins with test or they will be executed as tests.

Including Extra Setup

Some tests you write may require a little bit of setup. For the most part it’s okay just to include that in the individual
test method itself, but if you’re duplicating a lot of setup code across all or most of your test methods it’s best to use
the setUp method to perform whatever needs to be done prior to each test method.

The setUp method is inherited from the whichever plugin test case class you chose for your tests, and you can add
whatever functionality you want to it. Note the important distinction, however : you should be adding to it and not
overriding it. Just define setUp in your own plugin test case class and it will be run before all the test methods are
invoked.

Let’s do a quick example of one. Let’s write a setUp method which registers a test user for our test bot :

def setUp(self):
ChannelPluginTestCase.setUp(self) # important!!
# Create a valid user to use
self.prefix = 'foo!bar@baz'
self.feedMsg('register tester moo', to=self.nick, frm=self.prefix))
m = self.getMsg(' ') # Response to registration.

Now notice how the first line calls the parent class’s setUp method first ? This must be done first. Otherwise several
problems are likely to arise. For one, you wouldn’t have an irc object at self.irc that we use later on nor would self.nick
be set.

As for the rest of the method, you’ll notice a few things that are available to the plugin test author. self.prefix refers
to the hostmask of the hypothetical test user which will be « talking » to the bot, issuing commands. We set it to
some generically fake hostmask, and then we use feedMsg to send a private message (using the bot’s nick, accessible
via self.nick) to the bot registering the username « tester » with the password « moo ». We have to do it this way
(rather than what you’ll find out is the standard way of issuing commands to the bot in test cases a little later) because
registration must be done in private. And lastly, since feedMsg doesn’t dequeue any messages from the bot after being
fed a message, we perform a getMsg to get the response. You’re not expected to know all this yet, but do take note
of it since using these methods in test-writing is not uncommon. These utility methods as well as all of the available
assertions are covered in the next section.

So, now in any of the test methods we write, we’ll be able to count on the fact that there will be a registered user
« tester » with a password of « moo », and since we changed our prefix by altering self.prefix and registered after
doing so, we are now identified as this user for all messages we send unless we specify that they are coming from
some other prefix.

The Opposite of Setting-up : Tearing Down

If you did some things in your setUp that you want to clean up after, then this code belongs in the tearDown method
of your test case class. It’s essentially the same as setUp except that you probably want to wait to invoke the parent
class’s tearDown until after you’ve done all of your tearing down. But do note that you do still have to invoke the
parent class’s tearDown method if you decide to add in your own tear-down stuff.

2.1. Generic documentation 59



Limnoria Documentation, Version 0.83.4.1+limnoria

Setting Config Variables for Testing

Before we delve into all of the fun assertions we can use in our test methods it’s worth noting that each plugin test
case can set custom values for any Supybot config variable they want rather easily. Much like how we can simply list
the plugins we want loaded for our tests in the plugins attribute of our test case class, we can set config variables by
creating a mapping of variables to values with the config attribute.

So if, for example, we wanted to disable nested commands within our plugin testing for some reason, we could just do
this :

class MyPluginTestCase(PluginTestCase):
config = {'supybot.commands.nested': False}

def testThisThing(self):
# stuff

And now you can be assured that supybot.commands.nested is going to be off for all of your test methods in this test
case class.

Temporarily setting a configuration variable

Sometimes we want to change a configuration variable only in a test (or in a part of a test), and keep the original value
for other tests. The historical way to do it is :

import supybot.conf as conf

class MyPluginTestCase(PluginTestCase):
def testThisThing(self):

original_value = conf.supybot.commands.nested()
conf.supybot.commands.nested.setValue(False)
try:

# stuff
finally:

conf.supybot.commands.nested.setValue(original_value)

But there is a more compact syntax, using context managers :

import supybot.conf as conf

class MyPluginTestCase(PluginTestCase):
def testThisThing(self):

with conf.supybot.commands.nested.context(False):
# stuff

Note : Until stock Supybot or Gribble merge the second syntax, only Limnoria will support it.

Plugin Test Methods

The full list of test methods and how to use them.

60 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

Introduction

You know how to make plugin test case classes and you know how to do just about everything with them except to
actually test stuff. Well, listed below are all of the assertions used in tests. If you’re unfamiliar with what an assertion is
in code testing, it is basically a requirement of something that must be true in order for that test to pass. It’s a necessary
condition. If any assertion within a test method fails the entire test method fails and it goes on to the next one.

Assertions

All of these are methods of the plugin test classes themselves and hence are accessed by using self.assertWhatever in
your test methods. These are sorted in order of relative usefulness.

assertResponse(query, expectedResponse) Feeds query to the bot as a message and checks to make sure the
response is expectedResponse. The test fails if they do not match (note that prefixed nicks in the response do
not need to be included in the expectedResponse).

assertError(query) Feeds query to the bot and expects an error in return. Fails if the bot doesn’t return an error.

assertNotError(query) The opposite of assertError. It doesn’t matter what the response to query is, as long as it
isn’t an error. If it is not an error, this test passes, otherwise it fails.

assertRegexp(query, regexp, flags=re.I) Feeds query to the bot and expects something matching the regexp (no
m// required) in regexp with the supplied flags. Fails if the regexp does not match the bot’s response.

assertNotRegexp(query, regexp, flags=re.I) The opposite of assertRegexp. Fails if the bot’s output matches re-
gexp with the supplied flags.

assertHelp(query) Expects query to return the help for that command. Fails if the command help is not triggered.

assertAction(query, expectedResponse=None) Feeds query to the bot and expects an action in response, speci-
fically expectedResponse if it is supplied. Otherwise, the test passes for any action response.

assertActionRegexp(query, regexp, flags=re.I) Basically like assertRegexp but carries the extra requirement
that the response must be an action or the test will fail.

Utilities

feedMsg(query, to=None, frm=None) Simply feeds query to whoever is specified in to or to the bot itself if
no one is specified. Can also optionally specify the hostmask of the sender with the frm keyword. Does not
actually perform any assertions.

getMsg(query) Feeds query to the bot and gets the response.

Other Tests

If you had to write helper code for a plugin and want to test it, here’s how.

Previously we’ve only discussed how to test stuff in the plugin that is intended for IRC. Well, we realize that some
Supybot plugins will require utility code that doesn’t necessarily require all of the overhead of setting up IRC stuff,
and so we provide a more lightweight test case class, SupyTestCase, which is a very very light wrapper around unit-
test.TestCase (from the standard unittest module) that basically just provides a little extra logging. This test case class
is what you should use for writing those test cases which test things that are independent of IRC.

For example, in the MoobotFactoids plugin there is a large chunk of utility code dedicating to parsing out random
choices within a factoid using a class called OptionList. So, we wrote the OptionListTestCase as a SupyTestCase for
the MoobotFactoids plugin. The setup for test methods is basically the same as before, only you don’t have to define
plugins since this is independent of IRC.

2.1. Generic documentation 61



Limnoria Documentation, Version 0.83.4.1+limnoria

You still have the choice of using setUp and tearDown if you wish, since those are inherited from unittest.TestCase.
But, the same rules about calling the setUp or tearDown method from the parent class still apply.

With all this in hand, now you can write great tests for your Supybot plugins !

2.2 Specific documentation

2.2.1 Using Supybot’s utils module

Supybot provides a wealth of utilities for plugin writers in the supybot.utils module, this tutorial describes these utilities
and shows you how to use them.

str.py

The Format Function

The supybot.utils.str module provides a bunch of utility functions for handling string values. This section contains a
quick rundown of all of the functions available, along with descriptions of the arguments they take. First and foremost
is the format function, which provides a lot of capability in just one function that uses string-formatting style to
accomplish a lot. So much so that it gets its own section in this tutorial. All other functions will be in other sections.
format takes several arguments - first, the format string (using the format characters described below), and then after
that, each individual item to be formatted. Do not attempt to use the % operator to do the formatting because that will
fall back on the normal string formatting operator. The format function uses the following string formatting characters.

— % - literal %
— i - integer
— s - string
— f - float
— r - repr
— b - form of the verb to be (takes an int)
— h - form of the verb to have (takes an int)
— L - commaAndify (takes a list of strings or a tuple of ([strings], and))
— p - pluralize (takes a string)
— q - quoted (takes a string)
— n - n items (takes a 2-tuple of (n, item) or a 3-tuple of (n, between, item))
— S - a human-readable size (takes an int)
— t - time, formatted (takes an int)
— T - time delta, formatted (takes an int)
— u - url, wrapped in braces
— v - void, takes one or many arguments, but doesn’t display it (useful for translation)

Note : Until stock Supybot and Gribble merge them, %S, %T, and %v are only available in Limnoria.

Here are a few examples to help elaborate on the above descriptions :

>>> format("Error %q has been reported %n. For more information, see %u.",
"AttributeError", (5, "time"), "http://supybot.com")

'Error "AttributeError" has been reported 5 times. For more information,
see <http://supybot.com>.'

>>> i = 4

(suite sur la page suivante)

62 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

>>> format("There %b %n at this time. You are only allowed %n at any given
time", i, (i, "active", "thread"), (5, "active", "thread"))

'There are 4 active threads at this time. You are only allowed 5 active
threads at any given time'

>>> i = 1
>>> format("There %b %n at this time. You are only allowed %n at any given

time", i, (i, "active", "thread"), (5, "active", "thread"))
'There is 1 active thread at this time. You are only allowed 5 active
threads at any given time'

>>> ops = ["foo", "bar", "baz"]
>>> format("The following %n %h the %s capability: %L", (len(ops), "user"),

len(ops), "op", ops)
'The following 3 users have the op capability: foo, bar, and baz'

As you can see, you can combine all sorts of combinations of formatting strings into one. In fact, that was the major
motivation behind format. We have specific functions that you can use individually for each of those formatting types,
but it became much easier just to use special formatting chars and the format function than concatenating a bunch of
strings that were the result of other utils.str functions.

The Other Functions

These are the functions that can’t be handled by format. They are sorted in what I perceive to be the general order of
usefulness (and I’m leaving the ones covered by format for the next section).

— ellipsisify(s, n) - Returns a shortened version of a string. Produces up to the first n chars at the nearest word
boundary.
— s : the string to be shortened
— n : the number of characters to shorten it to

— perlReToPythonRe(s) - Converts a Perl-style regexp (e.g., « /abcd/i » or « m/abcd/i ») to an actual Python
regexp (an re object)
— s : the regexp string

— perlReToReplacer(s) - converts a perl-style replacement regexp (eg, « s/foo/bar/g ») to a Python function that
performs such a replacement
— s : the regexp string

— dqrepr(s) - Returns a repr() of s guaranteed to be in double quotes. (Double Quote Repr)
— s : the string to be double-quote repr()”ed

— toBool(s) - Determines whether or not a string means True or False and returns the appropriate boolean value.
True is any of « true », « on », « enable », « enabled », or « 1 ». False is any of « false », « off », « disable »,
« disabled », or « 0 ».
— s : the string to determine the boolean value for

— rsplit(s, sep=None, maxsplit=-1) - functionally the same as str.split in the Python standard library except split-
ting from the right instead of the left. Python 2.4 has str.rsplit (which this function defers to for those versions
>= 2.4), but Python 2.3 did not.
— s : the string to be split
— sep : the separator to split on, defaults to whitespace
— maxsplit : the maximum number of splits to perform, -1 splits all possible splits.

— normalizeWhitespace(s) - reduces all multi-spaces in a string to a single space
— s : the string to normalize

— depluralize(s) - the opposite of pluralize
— s : the string to depluralize

— unCommaThe(s) - Takes a string of the form « foo, the » and turns it into « the foo »
— s : string, the

2.2. Specific documentation 63



Limnoria Documentation, Version 0.83.4.1+limnoria

— distance(s, t) - computes the levenshtein distance (or « edit distance ») between two strings
— s : the first string
— t : the second string

— soundex(s, length=4) - computes the soundex for a given string
— s : the string to compute the soundex for
— length : the length of the soundex to generate

— matchCase(s1, s2) - Matches the case of the first string in the second string.
— s1 : the first string
— s2 : the string which will be made to match the case of the first

The Commands Format Already Covers

These commands aren’t necessary because you can achieve them more easily by using the format command, but they
exist if you decide you want to use them anyway though it is greatly discouraged for general use.

— commaAndify(seq, comma= », », And= »and ») - transforms a list of items into a comma separated list with
an « and » preceding the last element. For example, [« foo », « bar », « baz »] becomes « foo, bar, and baz ».
Is smart enough to convert two-element lists to just « item1 and item2 » as well.
— seq : the sequence of items (don’t have to be strings, but need to be “str()”-able)
— comma : the character to use to separate the list
— And : the word to use before the last element

— pluralize(s) - Returns the plural of a string. Put any exceptions to the general English rules of pluralization in
the plurals dictionary in supybot.utils.str.
— s : the string to pluralize

— nItems(n, item, between=None) - returns a string that describes a given number of an item (with any string
between the actual number and the item itself), handles pluralization with the pluralize function above. Note
that the arguments here are in a different order since between is optional.
— n : the number of items
— item : the type of item
— between : the optional string that goes between the number and the type of item

— quoted(s) - Returns the string surrounded by double-quotes.
— s : the string to quote

— be(i) - Returns the proper form of the verb « to be » based on the number provided (be(1) is « is », be(anything
else) is « are »)
— i : the number of things that « be »

— has(i) - Returns the proper form of the verb « to have » based on the number provided (has(1) is « has »,
has(anything else) is « have »)
— i : the number of things that « has »

structures.py

Intro

This module provides a number of useful data structures that aren’t found in the standard Python library. For the most
part they were created as needed for the bot and plugins themselves, but they were created in such a way as to be of
general use for anyone who needs a data structure that performs a like duty. As usual in this document, I’ll try and
order these in order of usefulness, starting with the most useful.

The queue classes

The structures module provides two general-purpose queue classes for you to use. The « queue » class is a robust
full-featured queue that scales up to larger sized queues. The « smallqueue » class is for queues that will contain fewer

64 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

(less than 1000 or so) items. Both offer the same common interface, which consists of :
— a constructor which will optionally accept a sequence to start the queue off with
— enqueue(item) - adds an item to the back of the queue
— dequeue() - removes (and returns) the item from the front of the queue
— peek() - returns the item from the front of the queue without removing it
— reset() - empties the queue entirely

In addition to these general-use queue classes, there are two other more specialized queue classes as well. The first is
the « TimeoutQueue » which holds a queue of items until they reach a certain age and then they are removed from the
queue. It features the following :

— TimeoutQueue(timeout, queue=None) - you must specify the timeout (in seconds) in the constructor. Note that
you can also optionally pass it a queue which uses any implementation you wish to use whether it be one of
the above (queue or smallqueue) or if it’s some custom queue you create that implements the same interface.
If you don’t pass it a queue instance to use, it will build its own using smallqueue.
— reset(), enqueue(item), dequeue() - all same as above queue classes
— setTimeout(secs) - allows you to change the timeout value

And for the final queue class, there’s the « MaxLengthQueue » class. As you may have guessed, it’s a queue that is
capped at a certain specified length. It features the following :

— MaxLengthQueue(length, seq=()) - the constructor naturally requires that you set the max length and it allows
you to optionally pass in a sequence to be used as the starting queue. The underlying implementation is actually
the queue from before.
— enqueue(item) - adds an item onto the back of the queue and if it would push it over the max length, it

dequeues the item on the front (it does not return this item to you)
— all the standard methods from the queue class are inherited for this class

The Other Structures

The most useful of the other structures is actually very similar to the « MaxLengthQueue ». It’s the « RingBuffer »,
which is essentially a MaxLengthQueue which fills up to its maximum size and then circularly replaces the old contents
as new entries are added instead of dequeuing. It features the following :

— RingBuffer(size, seq=()) - as with the MaxLengthQueue you specify the size of the RingBuffer and optionally
give it a sequence.
— append(item) - adds item to the end of the buffer, pushing out an item from the front if necessary
— reset() - empties out the buffer entirely
— resize(i) - shrinks/expands the RingBuffer to the size provided
— extend(seq) - append the items from the provided sequence onto the end of the RingBuffer

The next data structure is the TwoWayDictionary, which as the name implies is a dictionary in which key-value pairs
have mappings going both directions. It features the following :

— TwoWayDictionary(seq=(), **kwargs) - Takes an optional sequence of (key, value) pairs as well as any
key=value pairs specified in the constructor as initial values for the two-way dict.
— other than that, no extra features that a normal Python dict doesn’t already offer with the exception that

any (key, val) pair added to the dict is also added as (val, key) as well, so the mapping goes both ways.
Elements are still accessed the same way you always do with Python “dict’s.

There is also a MultiSet class available, but it’s very unlikely that it will serve your purpose, so I won’t go into it here.
The curious coder can go check the source and see what it’s all about if they wish (it’s only used once in our code, in
the Relay plugin).

web.py

The web portion of Supybot’s utils module is mainly used for retrieving data from websites but it also has some utility
functions pertaining to HTML and email text as well. The functions in web are listed below, once again in order of
usefulness.

— getUrl(url, size=None, headers=None) - gets the data at the URL provided and returns it as one large string

2.2. Specific documentation 65



Limnoria Documentation, Version 0.83.4.1+limnoria

— url : the location of the data to be retrieved or a urllib2.Request object to be used in the retrieval
— size : the maximum number of bytes to retrieve, defaults to None, meaning that it is to try to retrieve all

data
— headers : a dictionary mapping header types to header data

— getUrlFd(url, headers=None) - returns a file-like object for a url
— url : the location of the data to be retrieved or a urllib2.Request object to be used in the retrieval
— headers : a dictionary mapping header types to header data

— htmlToText(s, tagReplace= » « ) - strips out all tags in a string of HTML, replacing them with the specified
character
— s : the HTML text to strip the tags out of
— tagReplace : the string to replace tags with

— strError(e) - pretty-printer for web exceptions, returns a descriptive string given a web-related exception
— e : the exception to pretty-print

— mungeEmail(s) - a naive e-mail obfuscation function, replaces « @ » with « AT » and « . » with « DOT »
— s : the e-mail address to obfuscate

— getDomain(url) - returns the domain of a URL - url : the URL in question

The Best of the Rest

Intro

Rather than document each of the remaining portions of the supybot.utils module, I’ve elected to just pick out the
choice bits from specific parts and document those instead. Here they are, broken out by module name.

supybot.utils.file - file utilities

— touch(filename) - updates the access time of a file by opening it for writing and immediately closing it
— mktemp(suffix= »« ) - creates a decent random string, suitable for a temporary filename with the given suffix,

if provided
— the AtomicFile class - used for files that need to be atomically written, i.e., if there’s a failure the original file

remains unmodified. For more info consult file.py in src/utils

supybot.utils.gen - general utilities

— timeElapsed(elapsed, [lots of optional args]) - given the number of seconds elapsed, returns a string with the
English description of the amount of time passed, consult gen.py in src/utils for the exact argument list and
documentation if you feel you could use this function.

— exnToString(e) - improved exception-to-string function. Provides nicer output than a simple str(e).
— InsensitivePreservingDict class - a dict class that is case-insensitive when accessing keys

supybot.utils.iter - iterable utilities

— len(iterable) - returns the length of a given iterable
— groupby(key, iterable) - equivalent to the itertools.groupby function available as of Python 2.4. Provided for

backwards compatibility.
— any(p, iterable) - Returns true if any element in the iterable satisfies the predicate p
— all(p, iterable) - Returns true if all elements in the iterable satisfy the predicate p
— choice(iterable) - Returns a random element from the iterable

66 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

supybot.dynamicScope / dynamic - accessing variables in the stack

This feature is not in supybot.utils but still deserves to be documented as a utility.

Althrough you should avoid using this feature as long as you can, it is sometimes necessary to access variables the
Supybot API does not provide you.

For instance, the Aka plugin provides per-channel aliases by overriding getCommandMethod. However, the channel
where the command is called is not passed to this functions, so when writing Aka I could either add this parameter
(and thus break all plugins all plugins already overriding this method) or use this hack. I choosed this hack.

How does it work ? This is quite simple : dynamic.channel is a shortcut for supybot.dynamicScope.
DynamicScope.__getattr__('channel'), which browse the call stack backwards, looking for a variable
named channel, and then returns is as far as it finds it (and returns None if there is no such variale).

Note that you don’t have to import dynamicScope, the dynamic object is automatically set as a global variable
when Supybot starts.

2.2.2 Capabilities

Note : I wrote this section with the little knowledge I have of the capabilities system ; I work mainly by testing
different possibilities until I get what I want. As for all the documentation, feel free to contact me to correct/enhance
it.

First, you should know how capabilities work on the user side.

Checking for a capability given its name

You only have to use ircdb.checkCapability(prefix, 'capability').

You can also override some behavior of the capability system. Here is the complete documentation of ircdb.
checkCapabiltiy :

supybot.ircdb.checkCapability(hostmask, capability, users=<supybot.ircdb.UsersDictionary
object>, channels=<supybot.ircdb.ChannelsDictionary object>,
ignoreOwner=False, ignoreChannelOp=False, ignoreDefaultAl-
low=False)

Checks that the user specified by name/hostmask has the capability given.
users and channels default to ircdb.users and ircdb.channels.
ignoreOwner, ignoreChannelOp, and ignoreDefaultAllow are used to override default behavior
of the capability system in special cases (actually, in the AutoMode plugin) :
— ignoreOwner disables the behavior « owners have all capabilites »
— ignoreChannelOp disables the behavior « channel ops have all channel capabilities »
— ignoreDefaultAllow disables the behavior « if a user does not have a capability or the associated

anticapability, then they have the capability »

Manipulating capability names

Althrough you can manipulate capability names with string operations, Supybot provides a few methods to do that “in
the abstract” (could be useful if we change the capability syntax one day. . . ) :

supybot.ircdb.isCapability(capability)

2.2. Specific documentation 67



Limnoria Documentation, Version 0.83.4.1+limnoria

supybot.ircdb.makeChannelCapability(channel, capability)
Makes a channel capability given a channel and a capability.

supybot.ircdb.isChannelCapability(capability)
Returns True if capability is a channel capability ; False otherwise.

supybot.ircdb.makeAntiCapability(capability)
Returns the anticapability of a given capability.

supybot.ircdb.unAntiCapability(capability)
Takes an anticapability and returns the non-anti form.

supybot.ircdb.invertCapability(capability)
Make a capability into an anticapability and vice versa.

supybot.ircdb.isAntiCapability(capability)
Returns True if capability is an anticapability ; False otherwise.

supybot.ircdb.canonicalCapability(capability)

2.2.3 Special methods and catching events

This page is a non-exhaustive list of special plugin method names and events catchable via those methods (other events
include configuration hooks and HTTP server callbacks)

All methods here are defined in supybot-callbacks-plugin. You may override them if you need, but make
sure you call the parent’s one unless you actually don’t want to do it.

In case multiple plugins implement the same special methods, the order they are called depends on the callAfter
and callBefore (lists of plugin names) attributes of the plugins, if they are set.

Loading and unloading

The __init__ method gets called with an Irc object as a parameter when a plugin is loaded (or has just been
reloaded). Make sure you always call the parent’s __init__.

When a plugin is unloaded (or is to be reloaded), the die method is called (with no parameter). Also make sure you
always call the parent’s die.

Commands and numerics

You can catch commands directly with “do-methods” : when the bot receives a PRIVMSG, all doPrivmsg methods
are called ; when it gets a 437 message, all do437 methods are called, etc.

Those command take two commands : an Irc object and a IrcMsg object.

To get a list of all possible messages, check IRC RFCs.

Filters

The inFilter and outFilter methods allow you to “intercept” messages between the bot and the network and
to alter them.

inFilter gets messages just after they are parsed from network ; and its return value is fed to the bot. outFilter
does the opposite : it get any message the bot is about the send, and returns a message (which may be the same) that
will be sent instead.

68 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

Commands handling

Command dispatching

Note : I wrote this subsection with the little knowledge I have of the commands handling (all I know comes from hacks
I made to write the Aka plugin), so keep in mind some informations might be wrong. As for all the documentation,
feel free to contact me to correct/enhance it.

— isCommandMethod takes a command name as a string (which may contain spaces) and returns a boolean
telling if the plugin provides this command.

— listCommands returns a list of command names as strings (which may contain spaces)
— getCommand takes a potential command name as a list of strings, and returns a truncated list corresponding

to the name of a command provided by the plugin. If no command match, it returns an empty list.
— getCommandMethod takes a command name as a list of strings and returns the corresponding me-

thod/function.
— callCommand gets a command name as a list of strings, an irc object, an msg object, and extra arguments

(with *args and **kwargs), calls getCommandMethod to get the command method, and calls it with the
arguments. It also calls the functions in pre_command_callback.

Pre-command-call callbacks

Note : Until stock Supybot and Gribble merge this feature, this section only applies to Limnoria

If you want a function of your plugin to be called before every command call, you can add it to the
pre_command_callback attribute of your plugin (actually, it is a static class attribute, so make sure you add
it to the list and don’t touch other items of the list).

At every command call, all callbacks are called, and if any of them returns True, the command is not called.

Other command-related events

— all invalidCommand methods get called (with an Irc object, an IrcMsg objet, and a list of token) when a
user calls a command that no plugin provides.

Regular expression triggered events

The supybot.callbacks.PluginRegexp class provides some utilities for creating plugins that act on regular
expression matching.

2.2.4 Using Limnoria’s HTTP server in your plugins

Introduction

Note : Until stock Supybot or Gribble merge the HTTP server, this documentation only applies to Limnoria.

2.2. Specific documentation 69



Limnoria Documentation, Version 0.83.4.1+limnoria

Limnoria provides an HTTP server to plugins. This is not relevant for most plugins, but some of them have to start
a server (either for serving a website or for being remotely called). The HTTP server provided by Limnoria aims at
starting a single server for all of them, which means less used port and less resources usage.

Some example plugins are Factoids, WebStats, GitHub, UfrPaste, and WebDoc

Using the HTTP server in a plugin

Let’s try to make a basic dictionary about Supybot ! We’ll call it Supystory.

We want to get plain text information about Supybot, Gribble, and Limnoria when accessing http://localhost:
8080/supystory/supybot, http://localhost:8080/supystory/gribble, and http://localhost:8080/supystory/limnoria, an in-
dex page, and an HTML error page if the page is not found

Importing the HTTP server

On only have to add this line :

import supybot.httpserver as httpserver.

Creating a callback

If you are familiar with BaseHTTPServer, you will recognize the design, except you don’t need to subclass BaseHTTP-
Server, because I already did it in supybot.httpserver.

Now, you have to subclass httpserver.SupyHTTPServerCallback. A callback is pretty much like an handler, but this is
not an handler, because a callback is called by the handler.

Here is how to do it :

class SupystoryServerCallback(httpserver.SupyHTTPServerCallback):
name = 'Supystory'

Now, you have to register the callback, because the HTTP server does not know what subdirectory it should assign to
your callback. Do it with adding a __init__ to your plugin (read Supybot’s docs about it, for more informations) :

class Supystory(callbacks.Plugin):
def __init__(self, irc):

# Some stuff needed by Supybot
self.__parent = super(Supystory, self)
callbacks.Plugin.__init__(self, irc)

# registering the callback
callback = SupystoryServerCallback() # create an instance of the callback
httpserver.hook('supystory', callback) # register the callback at `/supystory`

By the way, don’t forget to unhook your callback when unloading your plugin, unless what it will be impossible to
reload the plugin ! Append this code to the following :

def die(self):
# unregister the callback
httpserver.unhook('supystory') # unregister the callback hooked at /supystory

# Stuff for Supybot
self.__parent.die()

70 Chapitre 2. Developing plugins for Limnoria

https://github.com/ProgVal/Limnoria/tree/master/plugins/Factoids
https://github.com/ProgVal/Supybot-plugins/tree/master/WebStats
https://github.com/ProgVal/Supybot-plugins/tree/master/GitHub
https://github.com/ProgVal/Supybot-plugins/tree/master/WebDoc
http://localhost:8080/supystory/supybot
http://localhost:8080/supystory/supybot
http://localhost:8080/supystory/gribble
http://localhost:8080/supystory/limnoria


Limnoria Documentation, Version 0.83.4.1+limnoria

Now, you can load your plugin, and you’ll see on the server a beautiful link to /supystory called Supystory.

Overriding the default error message

But our plugin does not do anything for the moment. If click the link, you’ll get this message :

This is a default response of the Supybot HTTP server. If you see this
message, it probably means you are developping a plugin, and you have
neither overriden this message or defined an handler for this query.

That mean your browser sent a GET request, but you didn’t teach your plugin how to handle it. First, we’ll change this
error message. Here is a new code for your callback :

class SupystoryServerCallback(httpserver.SupyHTTPServerCallback):
name = 'Supystory'
defaultResponse = """
This plugin handles only GET request, please don't use other requests."""

Now, you’ll get your customized message. But your plugin still doesn’t work. You need to implement the GET request.

Implementing the GET request

As I said before, callbacks are pretty much like handlers. In order to handle GET requests, you have to implement a
method called. . . doGet (if you used BaseHTTPServer, you will notice this is not do_GET, because doGet is more
homogeneous with Supybot naming style : doPrivmsg, doPing, and so on).

You will get the handler and the URI as arguments. The handler is a BaseHTTPRequestHandler, and the URI is a
string.

Here is the code of the callback. . . pretty much simple, as ever :

class SupystoryServerCallback(httpserver.SupyHTTPServerCallback):
name = 'Supystory'
defaultResponse = """
This plugin handles only GET request, please don't use other requests."""

def doGet(self, handler, path):
if path == '/supybot':

response = b'Supybot is the best IRC bot ever.'
elif path == '/gribble':

response = b'Thanks to Gribble, we have many bug fixes and SQLite 3
→˓support'

elif path == '/limnoria':
response = b'Thanks to Limnoria, you can to internationalize your

→˓plugins and write a web server.'
elif path == '' or path == '/':

handler.send_response(200) # Found
handler.send_header('Content-type', 'text/html') # This is the MIME for

→˓HTML data
handler.end_headers() # We won't send more headers
handler.wfile.write(b"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">

(suite sur la page suivante)

2.2. Specific documentation 71

http://docs.python.org/library/basehttpserver.html#BaseHTTPServer.BaseHTTPRequestHandler


Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

<title>Supystory</title>
</head>
<body>
<h1>Supystory</h1>
<p>
Here are some links you can visit:
<a href="./supybot">Supybot</a>
<a href="./gribble">Gribble</a>
<a href="./limnoria">Limnoria</a>

</p>
</body>
</html>""")
return

else:
handler.send_response(404) # Not found
handler.send_header('Content-type', 'text/html') # This is the MIME for

→˓HTML data
handler.end_headers() # We won't send more headers
handler.wfile.write(b"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Error</title>

</head>
<body>
<h1>404 Not found</h1>
<p>
The document could not be found. Try one of this links:
<a href="./supybot">Supybot</a>
<a href="./gribble">Gribble</a>
<a href="./limnoria">Limnoria</a>

</p>
</body>
</html>""")
return

handler.send_response(200)
handler.send_header('Content-type', 'text/plain') # This is the MIME for

→˓plain text
handler.end_headers() # We won't send more headers
handler.wfile.write(response)

Using templates

You may also want to allow your plugin’s users to customize the web pages without editing the source code of the
plugin itself.

Limnoria provides a template facility, which takes a file name, returns the content of a file from the file system if it
exists (the user-defined template), and a default one otherwise (the developer’s default template). does not exist.

In our case, we will do it only for the home page and the error page (which are the only “big” pages), like this :

DEFAULT_TEMPLATES = {
'supystory/index.html': """

<!DOCTYPE html>

(suite sur la page suivante)

72 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

<html>
<head>

<meta charset="UTF-8">
<title>Supystory</title>

</head>
<body>

<h1>Supystory</h1>
<p>

Here are some links you can visit:
<a href="./supybot">Supybot</a>
<a href="./gribble">Gribble</a>
<a href="./limnoria">Limnoria</a>

</p>
</body>

</html>""",
'supystory/error.html': """

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>Error</title>

</head>
<body>

<h1>404 Not found</h1>
<p>

The document could not be found. Try one of this links:
<a href="./supybot">Supybot</a>
<a href="./gribble">Gribble</a>
<a href="./limnoria">Limnoria</a>

</p>
</body>

</html>"""
}

httpserver.set_default_templates(DEFAULT_TEMPLATES)

class SupystoryServerCallback(httpserver.SupyHTTPServerCallback):
name = 'Supystory'
defaultResponse = """
This plugin handles only GET request, please don't use other requests."""

def doGet(self, handler, path):
if path == '/supybot':

response = b'Supybot is the best IRC bot ever.'
elif path == '/gribble':

response = b'Thanks to Gribble, we have many bug fixes and SQLite 3
→˓support'

elif path == '/limnoria':
response = b'Thanks to Limnoria, you can to internationalize your

→˓plugins and write a web server.'
elif path == '' or path == '/':

handler.send_response(200) # Found
handler.send_header('Content-type', 'text/html') # This is the MIME for

→˓HTML data
handler.end_headers() # We won't send more headers

(suite sur la page suivante)

2.2. Specific documentation 73



Limnoria Documentation, Version 0.83.4.1+limnoria

(suite de la page précédente)

handler.wfile.write(httpserver.get_template('supystory/index.html').
→˓encode('utf8'))

return
else:

handler.send_response(404) # Not found
handler.send_header('Content-type', 'text/html') # This is the MIME for

→˓HTML data
handler.end_headers() # We won't send more headers
handler.wfile.write(httpserver.get_template('supystory/error.html').

→˓encode('utf8'))
return

handler.send_response(200)
handler.send_header('Content-type', 'text/plain') # This is the MIME for

→˓plain text
handler.end_headers() # We won't send more headers
handler.wfile.write(response)

Then, the user can change the template by copying data/web/supystory/index.html.example to
data/web/supystory/index.html and editing it. (Same for error.html.)

2.3 Library reference

2.3.1 supybot.callbacks

Plugin

class supybot.callbacks.Plugin(*args, **kwargs)
Bases : supybot.callbacks.PluginMixin, supybot.callbacks.Commands
Proxy

alias de NestedCommandsIrcProxy
callPrecedence(*args, **kwargs)

Returns a pair of (callbacks to call before me, callbacks to call after me)
die(*args, **kwargs)

Makes the callback die. Called when the parent Irc object dies.
dispatchCommand(command)

Given a string “command”, dispatches to doCommand.
getCommandMethod(command)

Gets the given command from this plugin.
inFilter(*args, **kwargs)

Used for filtering/modifying messages as they’re entering.
ircmsgs.IrcMsg objects are immutable, so this method is expected to return another ircmsgs.IrcMsg object.
Obviously the same IrcMsg can be returned.

isCommand(*args, **kwargs)
Convenience, backwards-compatibility, semi-deprecated.

isCommandMethod(name)
Returns whether a given method name is a command in this plugin.

name()
Returns the name of the callback.

outFilter(*args, **kwargs)
Used for filtering/modifying messages as they’re leaving.
As with inFilter, an IrcMsg is returned.

74 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

reset(*args, **kwargs)
Resets the callback. Called when reconnecting to the server.

PluginRegexp

class supybot.callbacks.PluginRegexp(*args, **kwargs)
Bases : supybot.callbacks.Plugin
Same as Plugin, except allows the user to also include regexp-based callbacks. All regexp-based callbacks must
be specified in the set (or list) attribute « regexps », « addressedRegexps », or « unaddressedRegexps » depending
on whether they should always be triggered, triggered only when the bot is addressed, or triggered only when
the bot isn’t addressed.
addressedRegexps = ()

“addressedRegexps” methods are called only when the message is addressed, and then, only with the
payload (i.e., what is returned from the “addressed” function.

regexps = ()
“regexps” methods are called whether the message is addressed or not.

unaddressedRegexps = ()
“unaddressedRegexps” methods are called only when the message is not addressed.

tokenize

supybot.callbacks.tokenize(s, channel=None)
A utility function to create a Tokenizer and tokenize a string.

Other classes

This module contains the basic callbacks for handling PRIVMSGs.

exception supybot.callbacks.ArgumentError
Bases : supybot.callbacks.Error
The bot replies with a help message when this is raised.

class supybot.callbacks.BasePlugin(*args, **kwargs)
Bases : object

class supybot.callbacks.CanonicalNameDict(dict=None, key=None)
Bases : supybot.utils.gen.InsensitivePreservingDict
key(s)

Override this if you wish.

class supybot.callbacks.CanonicalNameSet(iterable=())
Bases : supybot.utils.gen.NormalizingSet
normalize(s)

class supybot.callbacks.CanonicalString(default, *args, **kwargs)
Bases : supybot.registry.NormalizedString
normalize(s)

class supybot.callbacks.CommandProcess(target=None, args=(), kwargs={})
Bases : supybot.world.SupyProcess
Just does some extra logging and error-recovery for commands that need to run in processes.
run()

Method to be run in sub-process ; can be overridden in sub-class

2.3. Library reference 75



Limnoria Documentation, Version 0.83.4.1+limnoria

class supybot.callbacks.CommandThread(target=None, args=(), kwargs={})
Bases : supybot.world.SupyThread
Just does some extra logging and error-recovery for commands that need to run in threads.
run()

Method representing the thread’s activity.
You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

class supybot.callbacks.Commands(*args, **kwargs)
Bases : supybot.callbacks.BasePlugin, supybot.utils.python.
SynchronizedAndFirewalled
callCommand(*args, **kwargs)
canonicalName()
commandArgs = ['self', 'irc', 'msg', 'args']
getCommand(args, stripOwnName=True)
getCommandHelp(command, simpleSyntax=None)
getCommandMethod(command)

Gets the given command from this plugin.
isCommand(*args, **kwargs)

Convenience, backwards-compatibility, semi-deprecated.
isCommandMethod(name)

Returns whether a given method name is a command in this plugin.
isDisabled(command)
listCommands(pluginCommands=[])
name()
pre_command_callbacks = []

class supybot.callbacks.Disabled(default, help, setDefault=True, showDefault=True,
**kwargs)

Bases : supybot.registry.SpaceSeparatedListOf
List

alias de CanonicalNameSet
Value

alias de CanonicalString
sorted = True

class supybot.callbacks.DisabledCommands
Bases : object
add(command, plugin=None)
disabled(command, plugin=None)
remove(command, plugin=None)

exception supybot.callbacks.Error
Bases : exceptions.Exception
Generic class for errors in Privmsg callbacks.

supybot.callbacks.IrcObjectProxy
alias de supybot.callbacks.NestedCommandsIrcProxy

class supybot.callbacks.MetaSynchronizedAndFirewalled
Bases : supybot.log.MetaFirewall, supybot.utils.python.MetaSynchronized

class supybot.callbacks.NestedCommandsIrcProxy(irc, msg, args, nested=0)
Bases : supybot.callbacks.ReplyIrcProxy
A proxy object to allow proper nesting of commands (even threaded ones).

76 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

error(s=”, Raise=False, **kwargs)
evalArgs(withClass=None)
finalEval()

findCallbacksForArgs(args)
Returns a two-tuple of (command, plugins) that has the command (a list of strings) and the plugins for
which it was a command.

noReply(msg=None)
replies(L, prefixer=None, joiner=None, onlyPrefixFirst=False, to=None, oneToOne=None,

**kwargs)
reply(s, noLengthCheck=False, prefixNick=None, action=None, private=None, notice=None,

to=None, msg=None, sendImmediately=False, stripCtcp=True)
Keyword arguments :
— noLengthCheck=False : True if the length shouldn’t be checked (used for “more” handling)
— prefixNick=True : False if the nick shouldn’t be prefixed to the reply.
— action=False : True if the reply should be an action.
— private=False : True if the reply should be in private.
— notice=False : True if the reply should be noticed when the bot is configured to do so.
— to=<nick|channel> : The nick or channel the reply should go to. Defaults to msg.args[0] (or

msg.nick if private)
— sendImmediately=False : True if the reply should use sendMsg() which bypasses

conf.supybot.protocols.irc.throttleTime and gets sent before any queued messages

class supybot.callbacks.PluginMixin(irc)
Bases : supybot.callbacks.BasePlugin, supybot.irclib.IrcCallback
Proxy

alias de NestedCommandsIrcProxy
alwaysCall = ()

canonicalName()
classModule = None

getPluginHelp()
noIgnore = False
public = True

registryValue(name, channel=None, value=True)
setRegistryValue(name, value, channel=None)
setUserValue(name, prefixOrName, value, ignoreNoUser=True, setValue=True)
threaded = False
userValue(name, prefixOrName, default=None)

supybot.callbacks.Privmsg
alias de supybot.callbacks.Plugin

supybot.callbacks.PrivmsgCommandAndRegexp
alias de supybot.callbacks.PluginRegexp

class supybot.callbacks.ReplyIrcProxy(irc, msg)
Bases : supybot.callbacks.RichReplyMethods
This class is a thin wrapper around an irclib.Irc object that gives it the reply() and error() methods (as well as
everything in RichReplyMethods, based on those two).
error(s, msg=None, **kwargs)
getRealIrc()

Returns the real irclib.Irc object underlying this proxy chain.
reply(s, msg=None, **kwargs)

2.3. Library reference 77



Limnoria Documentation, Version 0.83.4.1+limnoria

class supybot.callbacks.RichReplyMethods
Bases : object
This is a mixin so these replies need only be defined once. It operates under several assumptions, including the
fact that “self” is an Irc object of some sort and there is a self.msg that is an IrcMsg.
errorInvalid(what, given=None, s=”, repr=True, **kwargs)
errorNoCapability(capability, s=”, **kwargs)
errorNoUser(s=”, name=’that user’, **kwargs)
errorNotRegistered(s=”, **kwargs)
errorPossibleBug(s=”, **kwargs)
errorRequiresPrivacy(s=”, **kwargs)
noReply(msg=None)
replies(L, prefixer=None, joiner=None, onlyPrefixFirst=False, oneToOne=None, **kwargs)
replyError(s=”, **kwargs)
replySuccess(s=”, **kwargs)

exception supybot.callbacks.SilentError
Bases : supybot.callbacks.Error
An error that we should not notify the user.

supybot.callbacks.SimpleProxy
alias de supybot.callbacks.ReplyIrcProxy

class supybot.callbacks.Tokenizer(brackets=”, pipe=False, quotes=’"’)
Bases : object
separators = '\x00\r\n \t'

supybot.callbacks.addressed(nick, msg, **kwargs)
If msg is addressed to “name”, returns the portion after the address. Otherwise returns the empty string.

supybot.callbacks.canonicalName(command, preserve_spaces=False)
Turn a command into its canonical form.
Currently, this makes everything lowercase and removes all dashes and underscores.

supybot.callbacks.checkCommandCapability(msg, cb, commandName)

supybot.callbacks.error(msg, s, **kwargs)
Makes an error reply to msg with the appropriate error payload.

supybot.callbacks.formatCommand(command)

supybot.callbacks.getHelp(method, name=None, doc=None)

supybot.callbacks.getSyntax(method, name=None, doc=None)

supybot.callbacks.reply(msg, s, prefixNick=None, private=None, notice=None, to=None, ac-
tion=None, error=False, stripCtcp=True)

2.3.2 supybot.irclib

Irc

It is usually the irc object given to plugin commands.

class supybot.irclib.Irc(network, callbacks=[])
Bases : supybot.irclib.IrcCommandDispatcher, supybot.log.Firewalled
The base class for an IRC connection.
Handles PING commands already.

78 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

zombie
Whether or not this object represents a living IRC connection.

Type bool
network

The name of the network this object is connected to.
Type str

startedAt

Type float
addCallback(callback)

Adds a callback to the callbacks list.
Paramètres callback (supybot.irclib.IrcCallback) – A callback object

die(*args, **kwargs)
Makes the Irc object promise to die – but it won’t die (of its own volition) until all its queues are clear.
Isn’t that cool ?

dispatchCommand(command)
Given a string “command”, dispatches to doCommand.

do002(msg)
Logs the ircd version.

doAuthenticateScramFirst(mechanism)
Handle sending the client-first message of SCRAM auth.

doError(msg)
Handles ERROR messages.

doNick(msg)
Handles NICK messages.

doPing(msg)
Handles PING messages.

doPong(msg)
Handles PONG messages.

feedMsg(*args, **kwargs)
Called by the IrcDriver ; feeds a message received.

getCallback(name)
Gets a given callback by name.

isChannel(s)
Helper function to check whether a given string is a channel on the network this Irc object is connected to.

monitor(targets)
Increment a counter of how many callbacks monitor each target ; and send a MONITOR + to the server if
the target is not yet monitored.

queueMsg(msg)
Queues a message to be sent to the server.

removeCallback(name)
Removes a callback from the callback list.

reset()
Resets the Irc object. Called when the driver reconnects.

sendMsg(msg)
Queues a message to be sent to the server immediately

takeMsg(*args, **kwargs)
Called by the IrcDriver ; takes a message to be sent.

unmonitor(targets)
Decrements a counter of how many callbacks monitor each target ; and send a MONITOR - to the server
if the counter drops to 0.

2.3. Library reference 79



Limnoria Documentation, Version 0.83.4.1+limnoria

IrcState

Used mainly as the state attribute of supybot.irclib.Irc objects.

class supybot.irclib.IrcState(history=None, supported=None, nicksToHostmasks=None, chan-
nels=None, capabilities_ack=None, capabilities_nak=None, ca-
pabilities_ls=None)

Bases : supybot.irclib.IrcCommandDispatcher, supybot.log.Firewalled
Maintains state of the Irc connection. Should also become smarter.
addMsg(*args, **kwargs)

Updates the state based on the irc object and the message.
dispatchCommand(command)

Given a string “command”, dispatches to doCommand.
do004(irc, msg)

Handles parsing the 004 reply
Supported user and channel modes are cached

getTopic(channel)
Returns the topic for a given channel.

nickToHostmask(nick)
Returns the hostmask for a given nick.

reset()
Resets the state to normal, unconnected state.

ChannelState

Used mainly as the channels[“#chan”] attribute of supybot.irclib.Irc objects.

class supybot.irclib.ChannelState
Bases : supybot.utils.python.Object
addUser(user)

Adds a given user to the ChannelState. Power prefixes are handled.
removeUser(user)

Removes a given user from the channel.
replaceUser(oldNick, newNick)

Changes the user oldNick to newNick ; used for NICK changes.

Other classes

class supybot.irclib.Batch(type, arguments, messages)
Bases : tuple
arguments

Alias for field number 1
messages

Alias for field number 2
type

Alias for field number 0

class supybot.irclib.IrcCallback(*args, **kwargs)
Bases : supybot.irclib.IrcCommandDispatcher, supybot.log.Firewalled
Base class for standard callbacks.
Callbacks derived from this class should have methods of the form « doCommand » – doPrivmsg, doNick,
do433, etc. These will be called on matching messages.

80 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

callPrecedence(*args, **kwargs)
Returns a pair of (callbacks to call before me, callbacks to call after me)

die(*args, **kwargs)
Makes the callback die. Called when the parent Irc object dies.

inFilter(*args, **kwargs)
Used for filtering/modifying messages as they’re entering.
ircmsgs.IrcMsg objects are immutable, so this method is expected to return another ircmsgs.IrcMsg object.
Obviously the same IrcMsg can be returned.

name(*args, **kwargs)
Returns the name of the callback.

outFilter(*args, **kwargs)
Used for filtering/modifying messages as they’re leaving.
As with inFilter, an IrcMsg is returned.

reset(*args, **kwargs)
Resets the callback. Called when reconnecting to the server.

class supybot.irclib.IrcCommandDispatcher
Bases : object
Base class for classes that must dispatch on a command.
dispatchCommand(command)

Given a string “command”, dispatches to doCommand.

class supybot.irclib.IrcMsgQueue(iterable=())
Bases : object
Class for a queue of IrcMsgs. Eventually, it should be smart.
Probably smarter than it is now, though it’s gotten quite a bit smarter than it originally was. A method to
« score » methods, and a heapq to maintain a priority queue of the messages would be the ideal way to do
intelligent queuing.
As it stands, however, we simply keep track of “high priority” messages, “low priority” messages, and normal
messages, and just make sure to return the “high priority” ones before the normal ones before the “low priority”
ones.
dequeue()

Dequeues a given message.
enqueue(msg)

Enqueues a given message.
reset()

Clears the queue.

2.3.3 supybot.commands

Includes wrappers for commands.

class supybot.commands.context(spec)
Bases : object

class supybot.commands.any(spec, continueOnError=False)
Bases : supybot.commands.context

class supybot.commands.many(spec, continueOnError=False)
Bases : supybot.commands.any

class supybot.commands.optional(spec, default=None)
Bases : supybot.commands.additional

2.3. Library reference 81



Limnoria Documentation, Version 0.83.4.1+limnoria

class supybot.commands.additional(spec, default=None)
Bases : supybot.commands.context

class supybot.commands.rest(spec)
Bases : supybot.commands.context

class supybot.commands.getopts(getopts)
Bases : supybot.commands.context
The empty string indicates that no argument is taken ; None indicates that there is no converter for the argument.

class supybot.commands.first(*specs, **kw)
Bases : supybot.commands.context

class supybot.commands.reverse(spec)
Bases : supybot.commands.context

class supybot.commands.commalist(spec)
Bases : supybot.commands.context

supybot.commands.getConverter(name)

supybot.commands.addConverter(name, wrapper)

supybot.commands.callConverter(name, irc, msg, args, state, *L)

supybot.commands.urlSnarfer(f)
Protects the snarfer from loops (with other bots) and whatnot.

supybot.commands.thread(f)
Makes sure a command spawns a thread when called.

supybot.commands.wrap(f, *args, **kwargs)
Useful wrapper for plugin commands.
Valid converters are : admin, anything, banmask, boolean, callerInGivenChannel, capability, channel, chan-
nelDb, channelOrGlobal, channels, checkCapability, checkCapabilityButIgnoreOwner, checkChannelCapabi-
lity, color, commandName, email, expiry, filename, float, glob, halfop, haveHalfop, haveHalfop+, haveOp, ha-
veOp+, haveVoice, haveVoice+, hostmask, httpUrl, id, inChannel, index, int, ip, isGranted, letter, literal, long,
lowered, matches, networkIrc, nick, nickInChannel, nonInt, nonNegativeInt, now, onlyInChannel, op, otherU-
ser, owner, plugin, positiveInt, private, public, regexpMatcher, regexpMatcherMany, regexpReplacer, seenNick,
something, somethingWithoutSpaces, text, to, url, user, validChannel, voice.

Paramètres
— f – A command, taking (self, irc, msg, args, . . . ) as arguments
— specList – A list of converters and contexts

supybot.commands.process(f, *args, **kwargs)
Runs a function <f> in a subprocess.
Several extra keyword arguments can be supplied. <pn>, the pluginname, and <cn>, the command name, are
strings used to create the process name, for identification purposes. <timeout>, if supplied, limits the length
of execution of target function to <timeout> seconds. <heap_size>, if supplied, limits the memory used by the
target function.

supybot.commands.regexp_wrapper(s, reobj, timeout, plugin_name, fcn_name)
A convenient wrapper to stuff regexp search queries through a subprocess.
This is used because specially-crafted regexps can use exponential time and hang the bot.

class supybot.commands.Spec(types, allowExtra=False)
Bases : object

82 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

2.3.4 supybot.ircmsgs

This module provides the basic IrcMsg object used throughout the bot to represent the actual messages. It also provides
several helper functions to construct such messages in an easier way than the constructor for the IrcMsg object (which,
as you’ll read later, is quite. . . full-featured :))

class supybot.ircmsgs.IrcMsg(s=”, command=”, args=(), prefix=”, msg=None, re-
ply_env=None)

Bases : object
Class to represent an IRC message.
As usual, ignore attributes that begin with an underscore. They simply don’t exist. Instances of this class are not
to be modified, since they are hashable. Public attributes of this class are .prefix, .command, .args, .nick, .user,
and .host.
The constructor for this class is pretty intricate. It’s designed to take any of three major (sets of) arguments.
Called with no keyword arguments, it takes a single string that is a raw IRC message (such as one taken straight
from the network).
Called with keyword arguments, it requires a command parameter. Args is optional, but with most commands
will be necessary. Prefix is obviously optional, since clients aren’t allowed (well, technically, they are, but only
in a completely useless way) to send prefixes to the server.
Since this class isn’t to be modified, the constructor also accepts a “msg” keyword argument representing a
message from which to take all the attributes not provided otherwise as keyword arguments. So, for instance, if
a programmer wanted to take a PRIVMSG they’d gotten and simply redirect it to a different source, they could
do this :
IrcMsg(prefix=”“, args=(newSource, otherMsg.args[1]), msg=otherMsg)
tag(tag, value=True)

Affect a key :value pair to this message.
tagged(tag)

Get the value affected to a tag.

exception supybot.ircmsgs.MalformedIrcMsg
Bases : exceptions.ValueError

supybot.ircmsgs.action(recipient, s, prefix=”, msg=None)
Returns a PRIVMSG ACTION to recipient with the message msg.

supybot.ircmsgs.ban(channel, hostmask, exception=”, prefix=”, msg=None)
Returns a MODE to ban nick on channel.

supybot.ircmsgs.bans(channel, hostmasks, exceptions=(), prefix=”, msg=None)
Returns a MODE to ban each of nicks on channel.

supybot.ircmsgs.dehalfop(channel, nick, prefix=”, msg=None)
Returns a MODE to dehalfop nick on channel.

supybot.ircmsgs.dehalfops(channel, nicks, prefix=”, msg=None)
Returns a MODE to dehalfop each of nicks on channel.

supybot.ircmsgs.deop(channel, nick, prefix=”, msg=None)
Returns a MODE to deop nick on channel.

supybot.ircmsgs.deops(channel, nicks, prefix=”, msg=None)
Returns a MODE to deop each of nicks on channel.

supybot.ircmsgs.devoice(channel, nick, prefix=”, msg=None)
Returns a MODE to devoice nick on channel.

supybot.ircmsgs.devoices(channel, nicks, prefix=”, msg=None)
Returns a MODE to devoice each of nicks on channel.

2.3. Library reference 83



Limnoria Documentation, Version 0.83.4.1+limnoria

supybot.ircmsgs.halfop(channel, nick, prefix=”, msg=None)
Returns a MODE to halfop nick on channel.

supybot.ircmsgs.halfops(channel, nicks, prefix=”, msg=None)
Returns a MODE to halfop each of nicks on channel.

supybot.ircmsgs.invite(nick, channel, prefix=”, msg=None)
Returns an INVITE for nick.

supybot.ircmsgs.isAction(msg)
A predicate returning true if the PRIVMSG in question is an ACTION

supybot.ircmsgs.isCtcp(msg)
Returns whether or not msg is a CTCP message.

supybot.ircmsgs.join(channel, key=None, prefix=”, msg=None)
Returns a JOIN to a channel

supybot.ircmsgs.joins(channels, keys=None, prefix=”, msg=None)
Returns a JOIN to each of channels.

supybot.ircmsgs.kick(channel, nick, s=”, prefix=”, msg=None)
Returns a KICK to kick nick from channel with the message msg.

supybot.ircmsgs.kicks(channels, nicks, s=”, prefix=”, msg=None)
Returns a KICK to kick each of nicks from channel with the message msg.

supybot.ircmsgs.modes(channel, args=(), prefix=”, msg=None)
Returns a MODE message for the channel for all the (mode, targetOrNone) 2-tuples in “args”.

supybot.ircmsgs.nick(nick, prefix=”, msg=None)
Returns a NICK with nick nick.

supybot.ircmsgs.notice(recipient, s, prefix=”, msg=None)
Returns a NOTICE to recipient with the message msg.

supybot.ircmsgs.op(channel, nick, prefix=”, msg=None)
Returns a MODE to op nick on channel.

supybot.ircmsgs.ops(channel, nicks, prefix=”, msg=None)
Returns a MODE to op each of nicks on channel.

supybot.ircmsgs.part(channel, s=”, prefix=”, msg=None)
Returns a PART from channel with the message msg.

supybot.ircmsgs.parts(channels, s=”, prefix=”, msg=None)
Returns a PART from each of channels with the message msg.

supybot.ircmsgs.password(password, prefix=”, msg=None)
Returns a PASS command for accessing a server.

supybot.ircmsgs.ping(payload, prefix=”, msg=None)
Takes a payload and returns the proper PING IrcMsg.

supybot.ircmsgs.pong(payload, prefix=”, msg=None)
Takes a payload and returns the proper PONG IrcMsg.

supybot.ircmsgs.prettyPrint(msg, addRecipients=False, timestampFormat=None, show-
Nick=True)

Provides a client-friendly string form for messages.
IIRC, I copied BitchX’s (or was it XChat’s ?) format for messages.

supybot.ircmsgs.privmsg(recipient, s, prefix=”, msg=None)
Returns a PRIVMSG to recipient with the message msg.

84 Chapitre 2. Developing plugins for Limnoria



Limnoria Documentation, Version 0.83.4.1+limnoria

supybot.ircmsgs.quit(s=”, prefix=”, msg=None)
Returns a QUIT with the message msg.

supybot.ircmsgs.topic(channel, topic=None, prefix=”, msg=None)
Returns a TOPIC for channel with the topic topic.

supybot.ircmsgs.unAction(msg)
Returns the payload (i.e., non-ACTION text) of an ACTION msg.

supybot.ircmsgs.unban(channel, hostmask, prefix=”, msg=None)
Returns a MODE to unban nick on channel.

supybot.ircmsgs.unbans(channel, hostmasks, prefix=”, msg=None)
Returns a MODE to unban each of nicks on channel.

supybot.ircmsgs.user(ident, user, prefix=”, msg=None)
Returns a USER with ident ident and user user.

supybot.ircmsgs.voice(channel, nick, prefix=”, msg=None)
Returns a MODE to voice nick on channel.

supybot.ircmsgs.voices(channel, nicks, prefix=”, msg=None)
Returns a MODE to voice each of nicks on channel.

supybot.ircmsgs.who(hostmaskOrChannel, prefix=”, msg=None, args=())
Returns a WHO for the hostmask or channel hostmaskOrChannel.

supybot.ircmsgs.whois(nick, mask=”, prefix=”, msg=None)
Returns a WHOIS for nick.

supybot.ircmsgs.whowas(nick, mask=”, prefix=”, msg=None)
Returns a WHOIS for nick.

2.3. Library reference 85



Limnoria Documentation, Version 0.83.4.1+limnoria

86 Chapitre 2. Developing plugins for Limnoria



CHAPITRE 3

Contributing to Limnoria

3.1 Contributing to Limnoria as a developer

Note : This page is still a draft and is not complete.

3.1.1 About the policy about repository access

For the moment, I decided to give write access to my repository to nobody, because I want to check everything that is
pushed in it. If someone pushes a bad update, it may be dangerous for users and I do not want that.

On the other side, I am very open to pull requests, that’s to say, if you ask me to merge some changes you made, there
are 99% changes I will merge this changes. That’s why I suggest you to fork my repository on GitHub, make your
modifications, and click the « Pull requests » button in my repository.

3.1.2 Using Git

If you are a developer, I assume that you know how to use Git. If you don’t, I suggest you to learn how to use it, at
least the basics (clone, checkout, branch, commit, push/pull, add/rm, log, show, reset, revert).

I learnt how to use Git with an ebook, also available as a real book : Pro Git.

Our prefered way of contributing is through GitHub pull requests to ‘Limnoria’s repository‘_. Please send your pull
requests to the testing branch.

3.1.3 Where to start

If you are not an experienced Python and/or Limnoria developper, you can start with solving issues tagged as easy. I
believe they are likely to be easy to solve even without a lot of experience.

87

http://progit.org/book/
https://github.com/ProgVal/Limnoria/issues?q=label%3Aeasy


Limnoria Documentation, Version 0.83.4.1+limnoria

If you need help solving an issue (tagged as easy or not) or want to find an issue that matches your skills, please ask
on IRC, we will be glad to help you.

3.1.4 Code style

Read the doc in the source code (docs/STYLE.rst).

3.2 Translating Limnoria

I already wrote a guide on how to translate plugins. So, this page will only explain how to translate the core and push
your translations to Limnoria.

3.2.1 The best way : using Git yourself

As I said in the policy about developer’s contributions, I don’t give write access to my repo for the moment, but I
accept pull requests.

As you are a translator, you don’t need to know all the technical details about development, so I write a simplified doc
here.

Preparing git

First you should install git. It’s usually package git in your OS, or you can download it from their homepage or
download GitHub client for Windows or OS X

Then you should tell GitHub who you are and what is your email address. This information is attached to commits and
GitHub uses it to get your gravatar :

git config --global user.name "Real Name or Nickname here"
git config --global user.email "someone@example.com"

If you are going to use the https, you probably want git to remember your GitHub password for some time so you
don’t have to write it continuosly :

git config --global credential.helper cache
git config --global credential.helper "cache --timeout=3600"

This would make git remember your password for hour. It can be changed by changing 3600 to any other amount of
seconds.

Cloning the repository

You first need an account on GitHub ; I think you don’t need explaination for that.

Then, go on Limnoria repository and click the Fork button. This will create you a copy of my repository where you
will have write access (and I won’t have this write access).

Then, open a console, and write (replace YourName by the name of your GitHub account) :

git clone https://github.com/<YourName>/Limnoria.git --branch=testing

88 Chapitre 3. Contributing to Limnoria

https://github.com/ProgVal/Supybot-docs/blob/master/i18n/Limnoria_i18n.pdf?raw=true
http://git-scm.com/
https://windows.github.com/
https://mac.github.com/
https://github.com/
https://github.com/ProgVal/Limnoria


Limnoria Documentation, Version 0.83.4.1+limnoria

If you are experienced with git, you can git clone git@github.com:<YourName>/Limnoria.git
--branch=testing instead.

This will create a new directory, called Limnoria, where all the code and project history are copied. Now, cd to the
directory :

cd Limnoria/

The things below affect to you only if you didn’t specify the branch in the git clone command.

Then, you need to checkout the testing branch. What does that mean ? It means that there is differents stages in
Limnoria : all changes are made in testing, and when I think testing is stable, I merge it into master. So, checking out
testing means Git will use the code in testing, you will translate strings that are in testing, and changes you make will
be in testing. Now, do it :

git checkout testing

Git will reply you that it understood what you mean by testing.

Ok, now, you can translate.

Pushing translations

Once you have done some translations (let’s say you translated Alias), you have to commit your changes. That mean
you tell Git « Ok, I’ve made some changes, and I want to take a snapshot (either to be able to roll back or to publish
your changes).

First, you need to tell Git what files you want to be committed (let’s say you are the Finnish translator, so you updated
Alias’s fi.po) :

git add plugins/Alias/locales/fi.po

Then, you can commit your files. Depending on what you made, you can use one of this commands (not all of them !) :

git commit -m "Alias: Add l10n-fi."
git commit -m "Alias: Update l10n-fi."
git commit -m "Alias: Fix l10n-fi."

By the way, the text that follow -m is a message that will be readed by humans, so you can write anything you want,
but I think it’s better that everybody use the same kind of messages.

Ok, then, Git knows you have done something. But you didn’t send your work on Internet yet. To send it, run :

git push

Simple, isn’t it ?

Now, go back to GitHub and your forked repository, and click the Pull request button. Then, set testing on the both
side, and run Update Commit Range. I will by mailed that you asked me to merge your changes, and I will do it soon.

Getting updates

As you may know, I do some updates in Limnoria repository. ;)

You need to have the latest version of the messages.pot files. So, you need to teach Git how to get this updates :

git remote add upstream https://github.com/ProgVal/Limnoria.git

3.2. Translating Limnoria 89



Limnoria Documentation, Version 0.83.4.1+limnoria

Now, every time you want to download updates, run :

git fetch upstream
git merge upstream/testing

3.2.2 Another way : mailing me your translations

I think this is the simplest way for you. You only have to follow the translation guide and send me your .po files by
mail.

You can choose either one of this way to do it.

Mikaela’s way

Send the fi.po (or whatever the name is) files one by one as an attachment. Don’t forget to tell me what plugin it is.

I (Mikaela) have moved to git long time ago though.

skizzhg’s way

Do many translations. Put them in a tarball/zipball/whatever (but not a RAR archive, I can’t read them because is a
proprietary format).

I prefer that you choose this architecture :
— FirstPlugin/locales/it.po
— SecondPlugin/locales/it.po
— ThirdPlugin/locales/it.po

Because I can extract everything with one click.

90 Chapitre 3. Contributing to Limnoria



CHAPITRE 4

Indexes et tableaux

— genindex
— modindex
— search

91



Limnoria Documentation, Version 0.83.4.1+limnoria

92 Chapitre 4. Indexes et tableaux



Index des modules Python

s
supybot.callbacks, 75
supybot.commands, 81
supybot.irclib, 80
supybot.ircmsgs, 83

93



Limnoria Documentation, Version 0.83.4.1+limnoria

94 Index des modules Python



Index

A
action() (dans le module supybot.ircmsgs), 83
add() (méthode supybot.callbacks.DisabledCommands),

76
addCallback() (méthode supybot.irclib.Irc), 79
addConverter() (dans le module supybot.commands), 82
additional (classe dans supybot.commands), 81
addMsg() (méthode supybot.irclib.IrcState), 80
addressed() (dans le module supybot.callbacks), 78
addressedRegexps (attribut supy-

bot.callbacks.PluginRegexp), 75
addUser() (méthode supybot.irclib.ChannelState), 80
alwaysCall (attribut supybot.callbacks.PluginMixin), 77
any (classe dans supybot.commands), 81
ArgumentError, 75
arguments (attribut supybot.irclib.Batch), 80

B
ban() (dans le module supybot.ircmsgs), 83
bans() (dans le module supybot.ircmsgs), 83
BasePlugin (classe dans supybot.callbacks), 75
Batch (classe dans supybot.irclib), 80

C
callCommand() (méthode supybot.callbacks.Commands),

76
callConverter() (dans le module supybot.commands), 82
callPrecedence() (méthode supybot.callbacks.Plugin), 74
callPrecedence() (méthode supybot.irclib.IrcCallback), 80
canonicalName() (dans le module supybot.callbacks), 78
canonicalName() (méthode supy-

bot.callbacks.Commands), 76
canonicalName() (méthode supy-

bot.callbacks.PluginMixin), 77
CanonicalNameDict (classe dans supybot.callbacks), 75
CanonicalNameSet (classe dans supybot.callbacks), 75
CanonicalString (classe dans supybot.callbacks), 75
ChannelState (classe dans supybot.irclib), 80

checkCommandCapability() (dans le module supy-
bot.callbacks), 78

classModule (attribut supybot.callbacks.PluginMixin), 77
commalist (classe dans supybot.commands), 82
commandArgs (attribut supybot.callbacks.Commands),

76
CommandProcess (classe dans supybot.callbacks), 75
Commands (classe dans supybot.callbacks), 76
CommandThread (classe dans supybot.callbacks), 75
context (classe dans supybot.commands), 81

D
dehalfop() (dans le module supybot.ircmsgs), 83
dehalfops() (dans le module supybot.ircmsgs), 83
deop() (dans le module supybot.ircmsgs), 83
deops() (dans le module supybot.ircmsgs), 83
dequeue() (méthode supybot.irclib.IrcMsgQueue), 81
devoice() (dans le module supybot.ircmsgs), 83
devoices() (dans le module supybot.ircmsgs), 83
die() (méthode supybot.callbacks.Plugin), 74
die() (méthode supybot.irclib.Irc), 79
die() (méthode supybot.irclib.IrcCallback), 81
Disabled (classe dans supybot.callbacks), 76
disabled() (méthode supy-

bot.callbacks.DisabledCommands), 76
DisabledCommands (classe dans supybot.callbacks), 76
dispatchCommand() (méthode supybot.callbacks.Plugin),

74
dispatchCommand() (méthode supybot.irclib.Irc), 79
dispatchCommand() (méthode supy-

bot.irclib.IrcCommandDispatcher), 81
dispatchCommand() (méthode supybot.irclib.IrcState), 80
do002() (méthode supybot.irclib.Irc), 79
do004() (méthode supybot.irclib.IrcState), 80
doAuthenticateScramFirst() (méthode supybot.irclib.Irc),

79
doError() (méthode supybot.irclib.Irc), 79
doNick() (méthode supybot.irclib.Irc), 79
doPing() (méthode supybot.irclib.Irc), 79
doPong() (méthode supybot.irclib.Irc), 79

95



Limnoria Documentation, Version 0.83.4.1+limnoria

E
enqueue() (méthode supybot.irclib.IrcMsgQueue), 81
Error, 76
error() (dans le module supybot.callbacks), 78
error() (méthode supy-

bot.callbacks.NestedCommandsIrcProxy),
76

error() (méthode supybot.callbacks.ReplyIrcProxy), 77
errorInvalid() (méthode supy-

bot.callbacks.RichReplyMethods), 78
errorNoCapability() (méthode supy-

bot.callbacks.RichReplyMethods), 78
errorNotRegistered() (méthode supy-

bot.callbacks.RichReplyMethods), 78
errorNoUser() (méthode supy-

bot.callbacks.RichReplyMethods), 78
errorPossibleBug() (méthode supy-

bot.callbacks.RichReplyMethods), 78
errorRequiresPrivacy() (méthode supy-

bot.callbacks.RichReplyMethods), 78
evalArgs() (méthode supy-

bot.callbacks.NestedCommandsIrcProxy),
77

F
feedMsg() (méthode supybot.irclib.Irc), 79
finalEval() (méthode supy-

bot.callbacks.NestedCommandsIrcProxy),
77

findCallbacksForArgs() (méthode supy-
bot.callbacks.NestedCommandsIrcProxy),
77

first (classe dans supybot.commands), 82
formatCommand() (dans le module supybot.callbacks),

78

G
getCallback() (méthode supybot.irclib.Irc), 79
getCommand() (méthode supybot.callbacks.Commands),

76
getCommandHelp() (méthode supy-

bot.callbacks.Commands), 76
getCommandMethod() (méthode supy-

bot.callbacks.Commands), 76
getCommandMethod() (méthode supy-

bot.callbacks.Plugin), 74
getConverter() (dans le module supybot.commands), 82
getHelp() (dans le module supybot.callbacks), 78
getopts (classe dans supybot.commands), 82
getPluginHelp() (méthode supy-

bot.callbacks.PluginMixin), 77
getRealIrc() (méthode supybot.callbacks.ReplyIrcProxy),

77
getSyntax() (dans le module supybot.callbacks), 78

getTopic() (méthode supybot.irclib.IrcState), 80

H
halfop() (dans le module supybot.ircmsgs), 83
halfops() (dans le module supybot.ircmsgs), 84

I
inFilter() (méthode supybot.callbacks.Plugin), 74
inFilter() (méthode supybot.irclib.IrcCallback), 81
invite() (dans le module supybot.ircmsgs), 84
Irc (classe dans supybot.irclib), 78
IrcCallback (classe dans supybot.irclib), 80
IrcCommandDispatcher (classe dans supybot.irclib), 81
IrcMsg (classe dans supybot.ircmsgs), 83
IrcMsgQueue (classe dans supybot.irclib), 81
IrcObjectProxy (dans le module supybot.callbacks), 76
IrcState (classe dans supybot.irclib), 80
isAction() (dans le module supybot.ircmsgs), 84
isChannel() (méthode supybot.irclib.Irc), 79
isCommand() (méthode supybot.callbacks.Commands),

76
isCommand() (méthode supybot.callbacks.Plugin), 74
isCommandMethod() (méthode supy-

bot.callbacks.Commands), 76
isCommandMethod() (méthode supy-

bot.callbacks.Plugin), 74
isCtcp() (dans le module supybot.ircmsgs), 84
isDisabled() (méthode supybot.callbacks.Commands), 76

J
join() (dans le module supybot.ircmsgs), 84
joins() (dans le module supybot.ircmsgs), 84

K
key() (méthode supybot.callbacks.CanonicalNameDict),

75
kick() (dans le module supybot.ircmsgs), 84
kicks() (dans le module supybot.ircmsgs), 84

L
List (attribut supybot.callbacks.Disabled), 76
listCommands() (méthode supy-

bot.callbacks.Commands), 76

M
MalformedIrcMsg, 83
many (classe dans supybot.commands), 81
messages (attribut supybot.irclib.Batch), 80
MetaSynchronizedAndFirewalled (classe dans supy-

bot.callbacks), 76
modes() (dans le module supybot.ircmsgs), 84
monitor() (méthode supybot.irclib.Irc), 79

96 Index



Limnoria Documentation, Version 0.83.4.1+limnoria

N
name() (méthode supybot.callbacks.Commands), 76
name() (méthode supybot.callbacks.Plugin), 74
name() (méthode supybot.irclib.IrcCallback), 81
NestedCommandsIrcProxy (classe dans supy-

bot.callbacks), 76
network (attribut supybot.irclib.Irc), 79
nick() (dans le module supybot.ircmsgs), 84
nickToHostmask() (méthode supybot.irclib.IrcState), 80
noIgnore (attribut supybot.callbacks.PluginMixin), 77
noReply() (méthode supy-

bot.callbacks.NestedCommandsIrcProxy),
77

noReply() (méthode supy-
bot.callbacks.RichReplyMethods), 78

normalize() (méthode supy-
bot.callbacks.CanonicalNameSet), 75

normalize() (méthode supy-
bot.callbacks.CanonicalString), 75

notice() (dans le module supybot.ircmsgs), 84

O
op() (dans le module supybot.ircmsgs), 84
ops() (dans le module supybot.ircmsgs), 84
optional (classe dans supybot.commands), 81
outFilter() (méthode supybot.callbacks.Plugin), 74
outFilter() (méthode supybot.irclib.IrcCallback), 81

P
part() (dans le module supybot.ircmsgs), 84
parts() (dans le module supybot.ircmsgs), 84
password() (dans le module supybot.ircmsgs), 84
ping() (dans le module supybot.ircmsgs), 84
Plugin (classe dans supybot.callbacks), 74
PluginMixin (classe dans supybot.callbacks), 77
PluginRegexp (classe dans supybot.callbacks), 75
pong() (dans le module supybot.ircmsgs), 84
pre_command_callbacks (attribut supy-

bot.callbacks.Commands), 76
prettyPrint() (dans le module supybot.ircmsgs), 84
Privmsg (dans le module supybot.callbacks), 77
privmsg() (dans le module supybot.ircmsgs), 84
PrivmsgCommandAndRegexp (dans le module supy-

bot.callbacks), 77
process() (dans le module supybot.commands), 82
Proxy (attribut supybot.callbacks.Plugin), 74
Proxy (attribut supybot.callbacks.PluginMixin), 77
public (attribut supybot.callbacks.PluginMixin), 77
Python Enhancement Proposals

PEP 8, 48

Q
queueMsg() (méthode supybot.irclib.Irc), 79

quit() (dans le module supybot.ircmsgs), 84

R
regexp_wrapper() (dans le module supybot.commands),

82
regexps (attribut supybot.callbacks.PluginRegexp), 75
registryValue() (méthode supy-

bot.callbacks.PluginMixin), 77
remove() (méthode supy-

bot.callbacks.DisabledCommands), 76
removeCallback() (méthode supybot.irclib.Irc), 79
removeUser() (méthode supybot.irclib.ChannelState), 80
replaceUser() (méthode supybot.irclib.ChannelState), 80
replies() (méthode supy-

bot.callbacks.NestedCommandsIrcProxy),
77

replies() (méthode supy-
bot.callbacks.RichReplyMethods), 78

reply() (dans le module supybot.callbacks), 78
reply() (méthode supy-

bot.callbacks.NestedCommandsIrcProxy),
77

reply() (méthode supybot.callbacks.ReplyIrcProxy), 77
replyError() (méthode supy-

bot.callbacks.RichReplyMethods), 78
ReplyIrcProxy (classe dans supybot.callbacks), 77
replySuccess() (méthode supy-

bot.callbacks.RichReplyMethods), 78
reset() (méthode supybot.callbacks.Plugin), 75
reset() (méthode supybot.irclib.Irc), 79
reset() (méthode supybot.irclib.IrcCallback), 81
reset() (méthode supybot.irclib.IrcMsgQueue), 81
reset() (méthode supybot.irclib.IrcState), 80
rest (classe dans supybot.commands), 82
reverse (classe dans supybot.commands), 82
RichReplyMethods (classe dans supybot.callbacks), 77
run() (méthode supybot.callbacks.CommandProcess), 75
run() (méthode supybot.callbacks.CommandThread), 76

S
sendMsg() (méthode supybot.irclib.Irc), 79
separators (attribut supybot.callbacks.Tokenizer), 78
setRegistryValue() (méthode supy-

bot.callbacks.PluginMixin), 77
setUserValue() (méthode supy-

bot.callbacks.PluginMixin), 77
SilentError, 78
SimpleProxy (dans le module supybot.callbacks), 78
sorted (attribut supybot.callbacks.Disabled), 76
Spec (classe dans supybot.commands), 82
startedAt (attribut supybot.irclib.Irc), 79
supybot.callbacks (module), 75
supybot.commands (module), 81
supybot.irclib (module), 80

Index 97



Limnoria Documentation, Version 0.83.4.1+limnoria

supybot.ircmsgs (module), 83

T
tag() (méthode supybot.ircmsgs.IrcMsg), 83
tagged() (méthode supybot.ircmsgs.IrcMsg), 83
takeMsg() (méthode supybot.irclib.Irc), 79
thread() (dans le module supybot.commands), 82
threaded (attribut supybot.callbacks.PluginMixin), 77
tokenize() (dans le module supybot.callbacks), 75
Tokenizer (classe dans supybot.callbacks), 78
topic() (dans le module supybot.ircmsgs), 85
type (attribut supybot.irclib.Batch), 80

U
unAction() (dans le module supybot.ircmsgs), 85
unaddressedRegexps (attribut supy-

bot.callbacks.PluginRegexp), 75
unban() (dans le module supybot.ircmsgs), 85
unbans() (dans le module supybot.ircmsgs), 85
unmonitor() (méthode supybot.irclib.Irc), 79
urlSnarfer() (dans le module supybot.commands), 82
user() (dans le module supybot.ircmsgs), 85
userValue() (méthode supybot.callbacks.PluginMixin), 77

V
Value (attribut supybot.callbacks.Disabled), 76
voice() (dans le module supybot.ircmsgs), 85
voices() (dans le module supybot.ircmsgs), 85

W
who() (dans le module supybot.ircmsgs), 85
whois() (dans le module supybot.ircmsgs), 85
whowas() (dans le module supybot.ircmsgs), 85
wrap() (dans le module supybot.commands), 82

Z
zombie (attribut supybot.irclib.Irc), 78

98 Index


	The Supybot user guide
	Installing Limnoria on GNU/Linux and UNIX (FreeBSD, macOS, …)
	Installing Limnoria on Windows
	Getting Started with Supybot
	Configuration
	Identifying the bot to services
	Capacités
	Security in Limnoria
	Frequently Asked Questions
	Using the HTTP server
	Restarting the bot automatically

	Developing plugins for Limnoria
	Generic documentation
	Specific documentation
	Library reference

	Contributing to Limnoria
	Contributing to Limnoria as a developer
	Translating Limnoria

	Indexes et tableaux
	Index des modules Python

